Object Oriented Circuit-Generators in Java

Michael Chu

Nicholas Weaver*

André DeHon

Kolja Sulimma

John Wawrzynek

Abstract

Generators, parameterized code which produces a
digital design, have long been a staple of the VLSI com-
munity. In recent years, several Field Programmable
Gate Array (FPGA) design tools have adopted gen-
erators, as it is a convenient way to specify reusable
designs wn a familiar programming environment. We
have built a generator framework in Java as a basis
for programming reconfigurable devices and as a tool
to be embedded in larger development systems. In ad-
dition to the conventional benefits of generators, this
powerful framework allows for partial evaluation, sim-
ulation, specialization, and easy inclusion of other au-
tomatic services. In order to verify the utility of this
system, we have implemented several applications us-
ing this framework and compared them with implemen-
tations using schematic capture and HDIL synthesis.
Our system runs significantly faster and produces com-
parable or superior results when mapped to a target

FPGA.

1 Introduction

Generators are a method of digital design where
the designer writes a program which, when executed,
creates an instance of the design. Generators have
been used for the past 20 years within the VLSI com-
munity because it is easy to specify parameterized and
reusable designs. By allowing the programmer to spec-
ify bit width, area, performance, and other parameters
as arguments to his routine, a single generator can be
easily reused under different circumstances.

As a simple example, it is equally easy to describe
an N x M bit multiplier as it is to specify a 16-bit
multiplier by simply writing a loop which builds up
the multiplier to the desired size. Furthermore, the
multiplier can use different implementation strategies

*Address correspondence to nweaver@cs.berkeley.edu. This
work is sponsored in part by the DARPA ACS program under
grant DABT63-96-C-0048. Further support comes from NSF
grant CDA 94-01156 and the California State MICRO Program.

under different circumstances, in a way transparent
to the generator’s user. Anyone wishing to utilize this
design simply calls the generator and specifies the de-
sired parameters, allowing the single design to be eas-
ily used and reused wherever a multiplier is required.

Furthermore, most generator systems produce high
quality results because they can embed designer exper-
tise on how to best construct a particular instance of
some design. Instead of specifying a behavioral com-
putation and requiring an automatic tool to search
for a good structural implementation, most genera-
tors directly compose their desired structure. This al-
lows a well-designed generator to produce high-quality
designs with minimal mapping time. The quality of
the generator is, of course, highly dependent on the
generator writer’s skill and foresight in anticipating
its domain of use. A poorly written generator would
produce a worse structure than a compiled behavioral
description.

Another advantage of many generator systems is
the ability to embed the framework within an exist-
ing and familiar programming language. C, C4++,
Scheme, Java, or practically any other language can
be used to create a generator system. This way a pro-
grammer does not have to learn a new language and
syntax in order to build reconfigurable computing de-
signs, reducing one of the psychological barriers which
need to be overcome before reconfigurable computing
becomes mainstream. As an additional benefit, the
programmer may use the full expressive power of the
language to express and encapsulate his choices.

These benefits are well understood and have
been the rationale behind several systems includ-
ing Digital’s PamDC[4], its predecessor[2], the PAM-
Blox system[7] and National Semiconductor’s D4
language[8]. Other development systems, such as the
Cadence tool-suite, encourage developers to create ad-
hoc generators such as short scripts which tile small
components to form a large array. Even more, such
as the Xilinx LogicBlox[9] use generators which are
hidden from the user. All these existing systems
share a common philosophy, where the programmer
describes the computation as a series of small logic

units and connections, essentially building up netlists
out of primitive components.

Our system provides several benefits, including easy
composition of generators, a great deal of flexibil-
ity in specifying implementation decisions, convenient
portability of initial designs and the development en-
vironment between FPGA families, and the ability to
create default behaviors for a variety of optimizations
and to override these behaviors with domain specific
optimizations. Our system makes no distinction be-
tween primitives and user specified components, al-
lowing generators to easily compose other generators.
Since even primitives are treated as generators, any
design which is not specifically optimized for a tar-
get FPGA can be easily ported to a different FPGA
by simply changing which libraries the design utilizes.
The most powerful feature of our system is the abil-
ity to embed powerful optimizations and other services
into our system. For all such services, a default behav-
ior is defined which can be applied to all generators,
but any specific generator can override the default be-
havior to provide an application specific version.

We have built our generator system using object
oriented techniques within Java. In our design philoso-
phy, the programmer composes subcomponents which
are objects in the programming system. These objects
represent more than a simple netlist: they are also ca-
pable of other operations including partial evaluation
and simulation. Furthermore, the system retains the
programmer’s design hierarchy, allowing other auto-
mated services to act on this information.

This system provides a general framework for build-
ing generators and a set of target specific component
libraries. The programmer composes the library gen-
erators in order to create his own generator, by defin-
ing a Java object which contains slots for the subcom-
ponents and connections. This object’s constructor
must initialize the subcomponents and connect them
together. This object must also contain a method for
connecting a components inputs and outputs to the
subcomponents which make up the design. Finally, it
may contain routines to override the default behavior
of any automatic service in our system.

2 Generators in Java

Java[3] is an object oriented programming language
designed by Sun Microsystems. Among its notable
features are a fully dynamic nature, strong typing,
“pure” object oriented methodology, a powerful higher

order function abstraction', a well supported and ro-
bust exception handling mechanism, and a solid meta-
data interface.? Our generator framework exploits
these features in order to ease the task of generator
specification and enable the construction of powerful
services. These language features are only present in
languages like Java, Smalltalk and Common Lisp.

The programmer creates a Java class which is in-
herited from our supplied base-class. When the class
is instantiated, 1t creates its subcomponents, connects
them together, and instantiates its outputs. The class
also provides a means of attaching its inputs and out-
puts to the subcomponents. This separation between
object creation and defining connections is necessary
to allow the complex optimizations which may involve
moving and removing components. Furthermore, the
class may override methods and provide other meth-
ods to supplant or assist automatic services, but is not
required to do so. Once the object is instantiated, it
builds up a data structure with itself and any subcom-
ponents.

This generator environment provides methods
which can access individual subcomponents or apply
a user-defined function over all subcomponents. Sim-
ilarly, this generator environment provides methods
for examining all inputs and outputs and accessing
all components which are connected to a given in-
put or output. To provide much of this functionality,
the generator’s runtime maintains a comprehensive set
of backlinks and crosslinks in an automatic manner.
Therefore, although the programmer only creates for-
ward links, the programmer and all services have ac-
cess to backlinks for every pointer in the system once
the structures have been updated.

This mechanism allows the generator framework
and any service to traverse, analyze, and manipulate
a design in any manner desired, including tracing all
connections, find all components in a design of a spec-
ified type, cleanly remove a component from the data-
structure, or even replace a component with another
component of a compatible type. Although such func-
tionality is expected in any system which relies on a
custom compiler, we achieve this without having to
perform any modifications to the Java compiler, lan-
guage semantics, or Java runtime environment. A lan-
guage such as C4++4 would require extensive changes
to the compiler to enable these analyses or extensive
programmer intervention to maintain the data struc-

1 Java provides anonymous subclasses which are semantically
equivalent to lambda.

2Contained in the package java.lang.reflect, which allows
a Java program to examine an object’s structure and methods.

tures used to perform the analysis of a design.

The services themselves are comparatively easy to
write, because our runtime system includes several
abstractions which make accessing the detailed struc-
ture of objects convenient. As a simple example, logic
trimming was implemented as an automatic service,
requiring roughly 40 lines of Java to implement. In
order to define a new automatic service or optimiza-
tion, a new method must be defined in our provided
base-class which implements the desired manipula-
tions. Then, if a separate behavior is required for any
generators, these generators must override the new
method to provide the correct generator specific be-
havior.

Since everything in the framework is written in
Java, it can be compiled using any Java 1.1 compli-
ant complier and is executable as an application in
any Java 1.1 runtime. It uses no native methods or
language extensions not present in the Java 1.1 spec-
ification. Thus, our system 1s fully portable between
different operating systems and differing compilers, as
a consequence of Java’s inherent portability.

3 Specifying a Design

A design or component of a design is specified
as a Java object which inherits from our base-class,
GenComponent. It needs to contain slots for the ex-
ternal inputs and outputs and slots for the subcom-
ponents which make up the design. The object’s con-
structor should instantiate its subcomponents, attach
any internal components, and instantiate the object’s
outputs. Also, if the object uses any subcomponents
other then LogicFunction, it must provide a routine
called AttachWires(), which attaches the component’s
inputs to whatever subcomponets exist.

A simple example? is a full adder and the compo-
sition of a full adder to create a multi-bit adder.

package generator.tutorial;
import generator.*;
import generator.xc4000.*;

3This is because C4++ lacks a metadata interface, which al-
lows a program to discover the structure of objects within the
system. A C++4 system would require the programmer to regis-
ter a reference to each slot with the system in order to allow the
system to trace and restructure the pointers within a compo-
nent or would require the generator system to understand how
the compiler lays out the objects.

4 And somewhat artificial since adders are provided as array-
specific library components.

public class FullAdder extends GenComponentf{

public InputWire a, b, cin;
public OutputWire cout, sum;
public LogicFunction summation;
public LogicFunction carry;

public FullAdder(){
summation = new LogicFunction("a =~ b ~ cin");
carry = new LogicFunction("(a & b)|(a & cin)"
+ "|(b & cin)");
cout = carry.o;
sum = summation.o;

}

public void attachWires(){
summation.o = sum;
carry.o = cout;

}

public class Adder extends GenComponentq

public InputBus a, b;
public InputWire cin;
public OutputBus sum;
public OutputWire cout;
public FullAdder[] adders;
int width;

public Adder(int width){
this.width = width;
int i = 0;
Wire [] sumWires = new Wire[width];
adders = new FullAdder[width];
adders[0] = new FullAdder();
sumWires[0] = (Wire) adders[0].sum;
i++;
while(i < width){
adders[i] = new FullAdder();
adders[i].cin = (Wire)
adders[i-1].cout;
sumWires[i] = (Wire) adders[i].sum;
i++;
¥
cout = adders[--i].cout;
sum = new Bus(sumWires);

}

public void attachWires(){
int i = 0;
if(a !'= null){
for(; (i < width) &&
(i < a.getWidth()); ++i){

adders[i].a = a.getWire(i);
¥
¥
for(;i < width;i++){
adders[i].a = null;
¥
i=0;
if(b !'= null){
for(; (i < width) &&
(i < b.getWidth()); ++i){
adders[i].b = b.getWire(i);
¥
¥
for(;i < width;i++){
adders[i].b = null;
¥
if(cin '= null){
adders[0].cin = cin;
¥
i=0;
if(sum '= null){
for(; (i < width) &&
(i < sum.getWidth()); ++i){
adders[i] .sum = sum.getWire(i);
¥
¥
for(;i < width;i++){
adders[i].sum = null;
¥
adders[i-1].cout = cout;

}

This example illustrates most of the major features
of specifying a simple design in our generator system.
The full adder contains three wires which are used as
inputs, two which are used as outputs, and two logic
functions for the carry and sum logic. The constructor
is fairly simple, just instantiating the logic functions
and assigning its outputs. The logic function itself
takes a string as an argument and parses it according
to a simple grammar. All the variables in the expres-
sion refer to the inputs of the enclosing component,
which the logic function will automatically attach to
when necessary®.

The multi-bit adder’s constructor takes a single ar-
gument, the bit width of the adder desired. It then
creates an array for holding the full adders, connects
the carry chain®, and collects all of the outputs into

5We eventually plan to extend the functionality to include
pointer and array references and more sophisticated operations
6 The explicit cast is necessary because Input Wire and Out-

a single bus. The constructor could be replaced with
a more sophisticated version which chooses an imple-
mentation strategy based on the size of the adder and
the desired performance.

Also required is an attachWires method, which
goes through and attaches the wires contained in the
two input busses to the constituent adders. It needs
to make sure that it does not try to dereference inputs
and since inputs may change, it also must insure that
any old inputs are correctly replaced. Thus it insures
that all inputs which are not driven are correctly set
to null. A programmer who is confident in how his
generator will be used may omit some of the sanity
checks, but such a practice 1s highly discouraged.

4 Benefits over HDL synthesis

Our generator system offers numerous benefits over
HDL synthesis, including ease of specifying a special-
ized design, the ability to perform partial evaluation
and other high level transformations, and superior
runtime performance.

Most HDLs include simple iteration constructs for
building up a design based on simple parameters,
such as the generate functionality contained within
VHDL, but it is fairly awkward to do more complex
specializations. For example, it may be comparatively
difficult to specify a specialized multiply-by-constant
such as the one described in [6], where the multiplier
consists of table lookups which are based on the de-
sired constant. Our system makes it comparatively
easy to specify such designs, because the program
can instantiate arbitrary components based on its pro-
gram. Even combinational logic can be built up and
specified at runtime, by concatenating a string to de-
scribe the desired logic.

In addition to specializing a design when it is cre-
ated, our generator system allows partial evaluation,
which allows a design to further specialize itself as
additional information becomes available. In partial
evaluation, a series of constants are presented to the
design. Portions of the design then use the information
to both respecialize itself and compute more constants.
Partial evaluation is more sophisticated than simple
constant propagation, because it allows changes to the
structure to improve efficiency.

Most HDL compilers can perform such optimiza-
tions only on primitive components. For example, if

putWire are both supertypes of Wire yet always point to Wire
objects. Since Java does not support automatic type coercion
rules, it is necessary for the programmer to explicitly cast back-
and-forth when assigning an input from an output or vice-versa.

there is no primitive multiplier, an HDL implementa-
tion can’t observe that one of the inputs is constant
and convert the design to a more efficient form. In-
stead, it can only eliminate some of the adders as they
are optimized away. Our system allows any designer of
a generator to specify a method for partial evaluation.
If such a method exists, it is given the opportunity to
restructure the component. This aspect of our system
is detailed later in the paper.

Finally, our system offers impressive runtime per-
formance, even when running in a bytecode inter-
preter. On designs which may take a couple of minutes
for an HDL compiler to synthesize, our system requires
only a few seconds. The speed comes from several fac-
tors, including the generally simple and streamlined
nature of generators, that the generators themselves
are precompiled pieces of code, and that only opti-
mizations which a programmer believes may benefit a
design are invoked. This, combined with the ability to
easily perform specializations, opens the potential to
runtime reconfiguration, where an FPGA-like device
is dynamically reconfigured for the given task.

However, our system does contain some awkward
features not present in HDLs. Although generators
are an excellent way to specify high quality datapaths,
they are generally very awkward for specifying control
logic and irregular structures. Furthermore, like most
generator systems, it is highly dependent on the skill
of the programmer. Although a good programmer can
produce superior designs, a poor programmer would
probably get significantly better results in an HDL
system. These are some of the reasons why we expect
our system to mostly be integrated into larger devel-
opment environments as opposed to a stand-alone de-
velopment platform.

5 The Library Structure

By defining an array-specific library of components
with a common, array-independent interface, our sys-
tem provides for portable designs. All high-level com-
ponents, such as adders, counters, multipliers, and
similar blocks, possess a library-independent format
and operation, allowing designs to be ported by re-
placing the underlying library.

However, most FPGA architectures contain unique
features and there 1s no prohibition on libraries con-
taining low-level components, designers can use these
low-level components, although their existence is not
guaranteed on other platforms. The higher level li-
brary components can take advantage of such array
specific features within their default implementations,

component functionality
AddSub Adder/Subtractor
BinOp A binary operation
Comparator A comparator
Counter A binary counter
Decoder A decoder
FlipFlop D Flip-Flops
10Block Array 1/0
LogicFunction Arbitrary logic
MinMax MinMax testing
Multiplier An array multiplier
Mux2_1 2 input mux
ScanReg A scan chain register
Shifter A multibit shifer
SignExt Portable sign extender

Table 1: The components of the base library.

and may also present additional, array-specific param-
eters to the user. This is because the generic forms in
our base library will instantiate array-specific subcom-
ponents when possible. Thus, the generic counter will
instantiate and benefit from array specific adders.

Currently, the generator framework has been used
to construct a library for the Xilinx 4000F series[9] of
Field Programmable Gate Arrays. This library pro-
vides several high-level components, including adders,
counters, flip-flops, and multipliers. These compo-
nents are all parameterized, allowing them to imple-
ment functional blocks of arbitrary bit-width. A sam-
ple of the available library components is listed in Ta-
ble 1. Also included are several low-level components,
including tri-state buffers, and Xilinx input/output
pads. Additionally, all Xilinx library elements can
create XNF netlists, perform partial evaluation, and
simulate synchronous designs.

However, we have designed our library structure to
facilitate portability of our system between gate ar-
ray families. All the common parts in the array spe-
cific libraries inherit from generic versions contained
within the parts package. These generic versions in-
clude all the simulation, partial evaluation, and simi-
lar functionality common to all implementations. Ad-
ditionally, these generic versions create their internal
structure out of array specific components. Thus,
the generic counter will use array-optimized adders if
available.

This behavior allows the initial porting to a new
FPGA family to occur relatively quickly. All the
porter needs to do to target a new FPGA 1s provide
target specific netlist routines for BinOp, FlipFlop,
and I0OBlock. Afterwards, the porter can further re-

fine the other components to take advantage of ar-
ray specific features such as carry chains and tri-state
buffers, as well as provide components which directly
express these array features.

6 Simulation

One of the powerful features of the generator frame-
work is the ability to perform cycle-accurate simula-
tions of synchronous designs and automatically refer-
ence the results with a behavioral description of the
design, all within the generator framework. The sim-
ulation routines have the ability to accept either an
input vector or an object which generates patterns,
and automatically generate warnings when inconsis-
tencies are developed.

The simulator currently operates in a simple man-
ner. It first sets the chosen wires to the specified val-
ues, either by using the supplied input-vector or by
calling the test-pattern generator. The simulator then
examines all components which use the chosen wires
as inputs. If any of these components implement a
simulate routine, this routine is called.

The simulate() method is contained in all library
components and may be included in user-design com-
ponents, examines the component’s inputs and, if pos-
sible, assigns outputs. If the output was unassigned,
the value is now assigned and the simulation routines
for any connected components are called. If the out-
put was already assigned, nothing happens unless the
previous assignment was to a different value, which
causes the simulator to issue a warning.

This process iterates until no more changes occur,
by simply maintaining a queue of objects which need
to be examined and processing that queue until it is
empty. When the process is complete, all wires which
are unassigned issue further warnings. Then all cur-
rent values are transfered to a slot recording the value
at the last cycle, the current values are reset to unas-
signed, the input wires are set to the new value, and
the process repeats.

Since this is integrated into the generator frame-
work, there is no need for an external simulator
for functional testing. Furthermore, since high-level
components are concurrently simulated with low-level
components, this allows a generator-writer to compose
a simple behavioral description in Java and have it
compared with the structural description, all within
the unified framework.

The only major caveat is that the simulator only
works properly on fully synchronous designs or com-

binational logic, since the runtime system can’t dif-
ferentiate between asynchronous feedback and incon-
sistencies in the design. Although this might be awk-
ward, we don’t find this to be a serious limitation, as
most “well formed” FPGA-based computational tasks
do not posses asynchronous signals, with the excep-
tion of asynchronous flip-flop resets which will gener-
ate spurious warnings when used.

7 Partial Evaluation

One of the significant potential advantages for re-
configurable computing is the ability to reduce the
complexity and increase the performance of a design
by specializing around known or rarely changing in-
puts. As a simple example, a Finite Impulse Response
(FIR) filter is significantly smaller when specialized
around its coefficient weights. By performing a series
of table lookups and adds instead of general purpose
multiplications, it is possible to make the design both
smaller and faster. This i1s one of the primary means
which reconfigurable computing expects to see major
performance advantages over conventional computa-
tion.

We accomplish such specializations in two ways: 1)
a generator can accept parameters for specialized de-
signs, and 2) a generator can restructure itself to form
a specialized instance when some of its inputs become
known, either due to some runtime data available after
the generator is instantiated or revealed as a side-effect
of other generators being optimized. The first method
is obvious and intrinsically available in all generator
systems, the second is rather unique to most FPGA
development systems and generally referred to as par-
tial evaluation.”

Partial evaluation is accomplished by first assign-
ing any inputs which are of known value. Then, each
component which uses these connections has a chance
to examine its inputs and, if possible, rearrange its
internal structure, calculate its outputs, or remove it-
self completely. This process iterates until no more
changes can be accomplished. Since outputs can be
defined but not undefined, this process i1s guaranteed
to converge.

This is a significantly more powerful technique than
the standard constant-propagation supported by most
toolsets. For example, a multiplier composed of a se-
ries of AND gates and adders will be reduced by con-
stant propagation if the multiplier is a constant but

"Partial evaluation has a long history within programming
language systems.

not if the multiplicand is constant. With partial eval-
uation, the multiplier can restructure itself if either the
multiplier or multiplicand is a constant. Furthermore,
if the restructuring takes advantage of the algebra of
multiplication when it conducts its restructuring, it
will guarantee that at most n/2+2 adders are required
to multiply a number by an n-bit constant. Even more
sophisticated multipliers, such as those involving table
lookups, could be implemented.

It 1s also insufficient to do such transformations
solely when a component is created. For example,
if only constructor specified specializations were al-
lowed, an FIR filter which wishes to benefit from spe-
cialized multipliers would need to provide a separate
set of constructors for constant coefficients. And any
component which uses the FIR filter also would need
to acknowledge these specializations. Furthermore, if
the multiplier has specialization routines added to it,
the FIR implementation would need to be changed to
take advantage of the additional functionality. By us-
ing partial evaluation, it is possible for the user of an
FIR component to benefit from specialized multipli-
cations, even when the FIR component itself does not
consider such specializations.

The programmer can easily provide partial evalua-
tion routines for his components, by simply defining
an evaluate() method which examines its inputs and
calculates its outputs. As an example, the following
is a partial evaluation method for the multi-bit adder
example.®

public class Adder extends GenComponentq

public void evaluate(){
long aval = 0, bval = 0, cval = 0;
boolean valueKnown = false;
if(a == null || a.isValueKnown()){
valueKnown = true;
// we treat nulls as ground
aval = (a == null) ? 0
a.getValue();
¥
if(b == null || b.isValueKnown()){
bval = (b == null) 7 0
b.getValue();

} else {

valueKnown = false;
¥
if(cin == null ||

8 Once again, this is a somewhat synthetic example since the
logic functions which make up the adder will perform this opti-
mization, although not quite as efficiently.

cin.isValueKnown()){
cval = (cin == null) 7 0 :
cin.getValue();

} else {

valueKnown = false;
¥
if (valueKnown){

sum.setValue((aval + bval + cval)

& ((1 << width) - 1));
cout.setValue(

((aval &

((1 << width) - 1)) +
(bval &

((1 << width) - 1)) +
cval)

>= (1 << width) 7 1 : 0);
removeComponent () ;
}
}
}

This combines well with an additional feature of
our system, the ability to save a partially completed
design for use later. We eventually envision that a
design is created and optimized, then stored in an in-
ternal representation. When an actual instance is de-
sired, the intermediate representation can be reloaded,
additional optimizations can occur, and then the final
netlist is created.

8 Application #1,
matching

DNA pattern

An application implemented in the generator
framework was DNA sequence matching, as it 1s a well
understood problem within reconfigurable computing.
This problem was one of the primary applications on
the Splash systolic array[5]. DNA sequence match-
ing is usually implemented as a dynamic program-
ming algorithm designed to calculate edit-distance,
with a systolic implementation requiring O(m) space
and O(n) time, with m and n being the length of the
strings being compared.

The generator implementation is a 2-bit edit-
distance calculation which is specialized both on the
string being matched and the initial value for the sys-
tolic cell, resulting in a design which requires less then
4 Xilinx CLBs per character matched. This design is
completely equivalent to an implementation created
using schematic capture, both in design and perfor-
mance.

The primary advantage of the generator is the ease
of creating a specialized instance. Instead of hand se-
lecting or generating a schematic by choosing from 16
separate, not quite identical cell designs, a single cell
was created which accepts the appropriate parameters,
and another generator was created which instantiated
and connected a series of the systolic cells with the
correct parameters.

The specialization itself offers significant benefits.
The fully specialized version requires 4 CLBs on a Xil-
inx 4000, while one which can serially load a string
would require 5 CLBs, resulting in a 25% savings in
area. Since most applications of this edit-distance cal-
culation involve comparing a single string against a
large database, this is a natural target for specializa-
tion.

The top-level generator contains a main routine
which accepts the string being matched and creates
an XNF file which implements this function. It ac-
complishes this task by first creating a DNAtest ob-
ject and then calling the XNF-creation service on the
resulting object. Since the time it takes to create a
specialized instance is critical, we attempt to have our
system operate as fast as possible. The current run-
time performance is decent but not excellent, requiring
30 seconds to generate an XINF netlist for a 25 cell ex-
ample, running under JDK1.1.4 on an UltraSPARC?2
200.

9 Application #2, of the

RAW benchmarks

portions

The Raw benchmarks[1] are a series of micro-
benchmarks designed to test reconfigurable devices
and development tools. Each benchmark consists of
verilog for a single computational cell, verilog for a set
of control logic, and a small C program® which tiles a
specified number of cells together.

We reimplemented several instances of the RAW
benchmarks: life, bubblesort, jacobi, nqueens,
and mergesort. For each benchmark we created
a generator version, which we used to create an
XNF netlist while running in the JDK1.1.4 bytecode
interpreter'®. We timed how long it took for the java
program to execute and produce the desired netlist.
Ingo Schaefer of Synopsys took the corresponding ver-
ilog and mapped it to an XNF netlist using FPGA Ex-

9Essentially an ad-hoc generator

OEarly experimentation with JDK1.2beta2 with a just in
time bytecode compiler showed speedups of 50% over the same
generator running in the 1.1.4 bytecode interpreter.

erecution time (M:S5)
benchmark parameters generator verilog
bubblesort 16 8-bit cells 0:11 2:31
jacobi 4 x 4, 16-bits 0:14 0:39
life 32 x 1, 32 iterations 0:56 0:52
mergesort 8 16-bit cells 0:13 2:22
nqueens 4 rows, 4 cycles 0:15 0:22

Table 2: Parameters and tool runtime for the RAW

benchmarks
design size max delay
benchmark generator verilog generator | verilog
bubblesort || 226 CLBs | 227 CLBs 52 ns 46 ns
jacobi 289 CLBs | 247 CLBs 26 ns 26 ns
life 63 CLBs | 110 CLBs 15 ns 16 ns
mergesort 429 CLBs | 206 CLBs 35 ns 39 ns
nqueens 339 CLBs | 46 CLBs 21 ns 22 ns

Table 3: RAW benchmark final designs

press on a 200 MHz Sun Ultra2. We used a compara-
ble 200 MHz UltraSPARC 2 to execute our generator
versions of each benchmark. Then we compared the
results from the generator and the results provided
by Synopsys by running the generated XNF netlists
through the Xilinx M1 toolkit version M1.3.7 (run-
ning on a P6 200 under Windows NT for us, on an
UltraSPARC for Synopsys) for a Xilinx 4025e-2 1.
We compared the stated maximum worst-case delay
and LUT utilization between the two designs, as well
as the time to create the XINF netlist. Not included in
the times are the compile time and runtime required to
create the RAW benchmark’s verilog instances, or the
compile time necessary to create the java generators.'?

The poor performance of our system while creating
an instance of the 1ife benchmark points out the de-
ficiencies in our system with respect to random logic,
which expands out to numerous 2 input boolean op-
erations which stress our traversal and maintenance
routines. Since we need to visit and maintain consid-
erable information about every object in our system,
designs which consist of numerous small objects will
require more time to create netlists then designs con-
sisting of a few large monolithic blocks. The reason

ITAll instances of the benchmarks required roughly 5 to 15
minutes for the Xilinx tools to map a design from XNF to a
bitfile for the targeted array, with both the generator and HDL
version taking roughly equal time.

121t requires 90 seconds to build the entire generator frame-
work including the generic runtime, Xilinx library, and all test-
cases and benchmarks we implemented. Compiling just the Life
benchmark requires 8 seconds.

for our design being smaller is that it was somewhat
easier to express the calculation in the life cell in a way
which ends up more conducive to the logic trimming
which occurs at the edge of each cell.

Otherwise, the results are always time competitive
although not always area competitive with HDL based
systems. This is largely due to lower level optimiza-
tions which the HDL systems implement but are not
present in our system.

10 Conclusions

As seen in tables 2 and 3, our current generator
framework creates designs which are comparable with
current mature FPGA toolflows in performance, and
often comparable in area, while being significantly
faster at mapping many datapath oriented designs,
even when running in a bytecode interpreter.

Our generator system offers many features not
present in other systems, including the ability to offer
integrated simulation which automatically compares a
behavioral description with the structural result, par-
tial evaluation and the ability to specify high level
optimizations, and the ability to easily integrate fur-
ther optimizations into our framework. We expect to
continue to develop this framework by adding further
extensions including placement and verilog output, in-
terfaces to other tools, and focusing on improving run-
time performance.

11 Acknowledgments

Many thanks to Randy Huang and Tim Callahan
for their expert assistance with the development tools,
Jonathan Babb for assistance with the RAW bench-
mark suite, and Ingo Schaefer of Synopsys for provid-
ing us with the RAW benchmark numbers for FPGA

Express.

References

[1] Jonathan Babb, Matthew Frank, Victor Lee, El-
liot Waingold, Rajeev Barua, Michael Taylor,
Jang Kim, Sirkrishna Devabhaktuni, and Anant
Agarwal. The RAW Benchmark Suite: Computa-
tion Structures for General Purpose Computing.
In IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, Napa Valley, CA, April
1997.

[2] Patrice Bertin and Herve Touati. “PAM Program-
ming Environments: Practice and Experience”. In
IEEE Workshop on FPGAs for Custom Comput-
ing Machines, Napa Valley, CA, April 1994.

[3] James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. Addison Wesley, 1996.

[4] Tauati Herve and Mark Shand, “PamDC: a
C++ Library for the Simulation and Genera-
tion of Xilinx FPGA Designs”. March 30, 1997.

http://www.research. digital.com/SRC/pamette/PamDC. pdf.

[6] Dzung Hoang, “Searching Genetic Databases on
Splash 27, in Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines, April
1993.

[6] Tom Kean, Bernie New, and Bob Slous, “A Fast
Constant Coefficient Multiplier for the XC6200”.
In Field Programmable Logic 96.

[7] O Mencer, M Morf, and M Flynn, “PAM-Blox:
High performance FPGA Design for Adaptive
Computing”, in Proceedings of the IEEFE Sympo-
stum on Field Programmable Custom Computing

Machine, April 1998.
[8] Charle Rupp, D4 User’s Guide.

[9] Xilinx Corporation, The Programmable Logic Data
Book.

