
Object Oriented Circuit�Generators in Java

Michael Chu Nicholas Weaver� Kolja Sulimma Andr�e DeHon

John Wawrzynek

Abstract

Generators� parameterized code which produces a
digital design� have long been a staple of the VLSI com�
munity� In recent years� several Field Programmable
Gate Array �FPGA� design tools have adopted gen�
erators� as it is a convenient way to specify reusable
designs in a familiar programming environment� We
have built a generator framework in Java as a basis
for programming recon�gurable devices and as a tool
to be embedded in larger development systems� In ad�
dition to the conventional bene�ts of generators� this
powerful framework allows for partial evaluation� sim�
ulation� specialization� and easy inclusion of other au�
tomatic services� In order to verify the utility of this
system� we have implemented several applications us�
ing this framework and compared them with implemen�
tations using schematic capture and HDL synthesis�
Our system runs signi�cantly faster and produces com�
parable or superior results when mapped to a target
FPGA�

� Introduction

Generators are a method of digital design where
the designer writes a program which� when executed�
creates an instance of the design� Generators have
been used for the past �� years within the VLSI com�
munity because it is easy to specify parameterized and
reusable designs� By allowing the programmer to spec�
ify bit width� area� performance� and other parameters
as arguments to his routine� a single generator can be
easily reused under di�erent circumstances�

As a simple example� it is equally easy to describe
an N �M bit multiplier as it is to specify a ���bit
multiplier by simply writing a loop which builds up
the multiplier to the desired size� Furthermore� the
multiplier can use di�erent implementation strategies

�Address correspondence to nweaver�cs�berkeley�edu� This
work is sponsored in part by the DARPA ACS program under
grant DABT������C������ Further support comes from NSF
grant CDA ����		
� and the California StateMICRO Program�

under di�erent circumstances� in a way transparent
to the generator�s user� Anyone wishing to utilize this
design simply calls the generator and speci	es the de�
sired parameters� allowing the single design to be eas�
ily used and reused wherever a multiplier is required�

Furthermore� most generator systems produce high
quality results because they can embed designer exper�
tise on how to best construct a particular instance of
some design� Instead of specifying a behavioral com�
putation and requiring an automatic tool to search
for a good structural implementation� most genera�
tors directly compose their desired structure� This al�
lows a well�designed generator to produce high�quality
designs with minimal mapping time� The quality of
the generator is� of course� highly dependent on the
generator writer�s skill and foresight in anticipating
its domain of use� A poorly written generator would
produce a worse structure than a compiled behavioral
description�

Another advantage of many generator systems is
the ability to embed the framework within an exist�
ing and familiar programming language� C� C

�
Scheme� Java� or practically any other language can
be used to create a generator system� This way a pro�
grammer does not have to learn a new language and
syntax in order to build recon	gurable computing de�
signs� reducing one of the psychological barriers which
need to be overcome before recon	gurable computing
becomes mainstream� As an additional bene	t� the
programmer may use the full expressive power of the
language to express and encapsulate his choices�

These bene	ts are well understood and have
been the rationale behind several systems includ�
ing Digital�s PamDC��
� its predecessor��
� the PAM�
Blox system��
 and National Semiconductor�s D�
language��
� Other development systems� such as the
Cadence tool�suite� encourage developers to create ad�
hoc generators such as short scripts which tile small
components to form a large array� Even more� such
as the Xilinx LogicBlox��
 use generators which are
hidden from the user� All these existing systems
share a common philosophy� where the programmer
describes the computation as a series of small logic



units and connections� essentially building up netlists
out of primitive components�

Our system provides several bene	ts� including easy
composition of generators� a great deal of �exibil�
ity in specifying implementation decisions� convenient
portability of initial designs and the development en�
vironment between FPGA families� and the ability to
create default behaviors for a variety of optimizations
and to override these behaviors with domain speci	c
optimizations� Our system makes no distinction be�
tween primitives and user speci	ed components� al�
lowing generators to easily compose other generators�
Since even primitives are treated as generators� any
design which is not speci	cally optimized for a tar�
get FPGA can be easily ported to a di�erent FPGA
by simply changing which libraries the design utilizes�
The most powerful feature of our system is the abil�
ity to embed powerful optimizations and other services
into our system� For all such services� a default behav�
ior is de	ned which can be applied to all generators�
but any speci	c generator can override the default be�
havior to provide an application speci	c version�

We have built our generator system using object
oriented techniques within Java� In our design philoso�
phy� the programmer composes subcomponents which
are objects in the programming system� These objects
represent more than a simple netlist� they are also ca�
pable of other operations including partial evaluation
and simulation� Furthermore� the system retains the
programmer�s design hierarchy� allowing other auto�
mated services to act on this information�

This system provides a general framework for build�
ing generators and a set of target speci	c component
libraries� The programmer composes the library gen�
erators in order to create his own generator� by de	n�
ing a Java object which contains slots for the subcom�
ponents and connections� This object�s constructor
must initialize the subcomponents and connect them
together� This object must also contain a method for
connecting a components inputs and outputs to the
subcomponents which make up the design� Finally� it
may contain routines to override the default behavior
of any automatic service in our system�

� Generators in Java

Java��
 is an object oriented programming language
designed by Sun Microsystems� Among its notable
features are a fully dynamic nature� strong typing�
�pure� object oriented methodology� a powerful higher

order function abstraction�� a well supported and ro�
bust exception handling mechanism� and a solid meta�
data interface�� Our generator framework exploits
these features in order to ease the task of generator
speci	cation and enable the construction of powerful
services� These language features are only present in
languages like Java� Smalltalk and Common Lisp�

The programmer creates a Java class which is in�
herited from our supplied base�class� When the class
is instantiated� it creates its subcomponents� connects
them together� and instantiates its outputs� The class
also provides a means of attaching its inputs and out�
puts to the subcomponents� This separation between
object creation and de	ning connections is necessary
to allow the complex optimizations which may involve
moving and removing components� Furthermore� the
class may override methods and provide other meth�
ods to supplant or assist automatic services� but is not
required to do so� Once the object is instantiated� it
builds up a data structure with itself and any subcom�
ponents�

This generator environment provides methods
which can access individual subcomponents or apply
a user�de	ned function over all subcomponents� Sim�
ilarly� this generator environment provides methods
for examining all inputs and outputs and accessing
all components which are connected to a given in�
put or output� To provide much of this functionality�
the generator�s runtime maintains a comprehensive set
of backlinks and crosslinks in an automatic manner�
Therefore� although the programmer only creates for�
ward links� the programmer and all services have ac�
cess to backlinks for every pointer in the system once
the structures have been updated�

This mechanism allows the generator framework
and any service to traverse� analyze� and manipulate
a design in any manner desired� including tracing all
connections� 	nd all components in a design of a spec�
i	ed type� cleanly remove a component from the data�
structure� or even replace a component with another
component of a compatible type� Although such func�
tionality is expected in any system which relies on a
custom compiler� we achieve this without having to
perform any modi	cations to the Java compiler� lan�
guage semantics� or Java runtime environment� A lan�
guage such as C

 would require extensive changes
to the compiler to enable these analyses or extensive
programmer intervention to maintain the data struc�

�Java provides anonymous subclasses which are semantically
equivalent to lambda�

�Contained in the package java�lang�reflect� which allows
a Java program to examine an object�s structure and methods�



tures used to perform the analysis of a design��
The services themselves are comparatively easy to

write� because our runtime system includes several
abstractions which make accessing the detailed struc�
ture of objects convenient� As a simple example� logic
trimming was implemented as an automatic service�
requiring roughly �� lines of Java to implement� In
order to de	ne a new automatic service or optimiza�
tion� a new method must be de	ned in our provided
base�class which implements the desired manipula�
tions� Then� if a separate behavior is required for any
generators� these generators must override the new
method to provide the correct generator speci	c be�
havior�

Since everything in the framework is written in
Java� it can be compiled using any Java ��� compli�
ant complier and is executable as an application in
any Java ��� runtime� It uses no native methods or
language extensions not present in the Java ��� spec�
i	cation� Thus� our system is fully portable between
di�erent operating systems and di�ering compilers� as
a consequence of Java�s inherent portability�

� Specifying a Design

A design or component of a design is speci	ed
as a Java object which inherits from our base�class�
GenComponent� It needs to contain slots for the ex�
ternal inputs and outputs and slots for the subcom�
ponents which make up the design� The object�s con�
structor should instantiate its subcomponents� attach
any internal components� and instantiate the object�s
outputs� Also� if the object uses any subcomponents
other then LogicFunction� it must provide a routine
called AttachWires��� which attaches the component�s
inputs to whatever subcomponets exist�

A simple example� is a full adder and the compo�
sition of a full adder to create a multi�bit adder�

package generator�tutorial�

import generator���

import generator�xc�������

�This is because C

 lacks a metadata interface� which al�

lows a program to discover the structure of objects within the
system� A C

 system would require the programmer to regis�
ter a reference to each slot with the system in order to allow the
system to trace and restructure the pointers within a compo�
nent or would require the generator system to understand how
the compiler lays out the objects�

�And somewhat arti�cial since adders are provided as array�
speci�c library components�

public class FullAdder extends GenComponent�

public InputWire a� b� cin�

public OutputWire cout� sum�

public LogicFunction summation�

public LogicFunction carry�

public FullAdder���

summation 	 new LogicFunction�
a � b � cin
��

carry 	 new LogicFunction�
�a � b�
�a � cin�


� 

�b � cin�
��

cout 	 carry�o�

sum 	 summation�o�

�

public void attachWires���

summation�o 	 sum�

carry�o 	 cout�

�

�

public class Adder extends GenComponent�

public InputBus a� b�

public InputWire cin�

public OutputBus sum�

public OutputWire cout�

public FullAdder�� adders�

int width�

public Adder�int width��

this�width 	 width�

int i 	 ��

Wire �� sumWires 	 new Wire�width��

adders 	 new FullAdder�width��

adders��� 	 new FullAdder���

sumWires��� 	 �Wire� adders����sum�

i���

while�i � width��

adders�i� 	 new FullAdder���

adders�i��cin 	 �Wire�

adders�i����cout�

sumWires�i� 	 �Wire� adders�i��sum�

i���

�

cout 	 adders���i��cout�

sum 	 new Bus�sumWires��

�

public void attachWires���

int i 	 ��

if�a �	 null��

for�� �i � width� ��

�i � a�getWidth���� ��i��



adders�i��a 	 a�getWire�i��

�

�

for��i � width�i����

adders�i��a 	 null�

�

i 	 ��

if�b �	 null��

for�� �i � width� ��

�i � b�getWidth���� ��i��

adders�i��b 	 b�getWire�i��

�

�

for��i � width�i����

adders�i��b 	 null�

�

if�cin �	 null��

adders����cin 	 cin�

�

i 	 ��

if�sum �	 null��

for�� �i � width� ��

�i � sum�getWidth���� ��i��

adders�i��sum 	 sum�getWire�i��

�

�

for��i � width�i����

adders�i��sum 	 null�

�

adders�i����cout 	 cout�

�

�

This example illustrates most of the major features
of specifying a simple design in our generator system�
The full adder contains three wires which are used as
inputs� two which are used as outputs� and two logic
functions for the carry and sum logic� The constructor
is fairly simple� just instantiating the logic functions
and assigning its outputs� The logic function itself
takes a string as an argument and parses it according
to a simple grammar� All the variables in the expres�
sion refer to the inputs of the enclosing component�
which the logic function will automatically attach to
when necessary� �

The multi�bit adder�s constructor takes a single ar�
gument� the bit width of the adder desired� It then
creates an array for holding the full adders� connects
the carry chain�� and collects all of the outputs into

�We eventually plan to extend the functionality to include
pointer and array references and more sophisticated operations

�The explicit cast is necessary because InputWire and Out�

a single bus� The constructor could be replaced with
a more sophisticated version which chooses an imple�
mentation strategy based on the size of the adder and
the desired performance�

Also required is an attachWires method� which
goes through and attaches the wires contained in the
two input busses to the constituent adders� It needs
to make sure that it does not try to dereference inputs
and since inputs may change� it also must insure that
any old inputs are correctly replaced� Thus it insures
that all inputs which are not driven are correctly set
to null� A programmer who is con	dent in how his
generator will be used may omit some of the sanity
checks� but such a practice is highly discouraged�

� Bene�ts over HDL synthesis

Our generator system o�ers numerous bene	ts over
HDL synthesis� including ease of specifying a special�
ized design� the ability to perform partial evaluation
and other high level transformations� and superior
runtime performance�

Most HDLs include simple iteration constructs for
building up a design based on simple parameters�
such as the generate functionality contained within
VHDL� but it is fairly awkward to do more complex
specializations� For example� it may be comparatively
di�cult to specify a specialized multiply�by�constant
such as the one described in ��
� where the multiplier
consists of table lookups which are based on the de�
sired constant� Our system makes it comparatively
easy to specify such designs� because the program
can instantiate arbitrary components based on its pro�
gram� Even combinational logic can be built up and
speci	ed at runtime� by concatenating a string to de�
scribe the desired logic�

In addition to specializing a design when it is cre�
ated� our generator system allows partial evaluation�
which allows a design to further specialize itself as
additional information becomes available� In partial
evaluation� a series of constants are presented to the
design� Portions of the design then use the information
to both respecialize itself and compute more constants�
Partial evaluation is more sophisticated than simple
constant propagation� because it allows changes to the
structure to improve e�ciency�

Most HDL compilers can perform such optimiza�
tions only on primitive components� For example� if

putWire are both supertypes of Wire yet always point to Wire
objects� Since Java does not support automatic type coercion
rules� it is necessary for the programmer to explicitly cast back�
and�forthwhen assigning an input from an output or vice�versa�



there is no primitive multiplier� an HDL implementa�
tion can�t observe that one of the inputs is constant
and convert the design to a more e�cient form� In�
stead� it can only eliminate some of the adders as they
are optimized away� Our system allows any designer of
a generator to specify a method for partial evaluation�
If such a method exists� it is given the opportunity to
restructure the component� This aspect of our system
is detailed later in the paper�

Finally� our system o�ers impressive runtime per�
formance� even when running in a bytecode inter�
preter� On designs which may take a couple of minutes
for an HDL compiler to synthesize� our system requires
only a few seconds� The speed comes from several fac�
tors� including the generally simple and streamlined
nature of generators� that the generators themselves
are precompiled pieces of code� and that only opti�
mizations which a programmer believes may bene	t a
design are invoked� This� combined with the ability to
easily perform specializations� opens the potential to
runtime recon	guration� where an FPGA�like device
is dynamically recon	gured for the given task�

However� our system does contain some awkward
features not present in HDLs� Although generators
are an excellent way to specify high quality datapaths�
they are generally very awkward for specifying control
logic and irregular structures� Furthermore� like most
generator systems� it is highly dependent on the skill
of the programmer� Although a good programmer can
produce superior designs� a poor programmer would
probably get signi	cantly better results in an HDL
system� These are some of the reasons why we expect
our system to mostly be integrated into larger devel�
opment environments as opposed to a stand�alone de�
velopment platform�

� The Library Structure

By de	ning an array�speci	c library of components
with a common� array�independent interface� our sys�
tem provides for portable designs� All high�level com�
ponents� such as adders� counters� multipliers� and
similar blocks� possess a library�independent format
and operation� allowing designs to be ported by re�
placing the underlying library�

However� most FPGA architectures contain unique
features and there is no prohibition on libraries con�
taining low�level components� designers can use these
low�level components� although their existence is not
guaranteed on other platforms� The higher level li�
brary components can take advantage of such array
speci	c features within their default implementations�

component functionality
AddSub Adder�Subtractor
BinOp A binary operation

Comparator A comparator
Counter A binary counter
Decoder A decoder
FlipFlop D Flip�Flops
IOBlock Array I�O

LogicFunction Arbitrary logic
MinMax MinMax testing
Multiplier An array multiplier
Mux� � � input mux
ScanReg A scan chain register
Shifter A multibit shifer
SignExt Portable sign extender

Table �� The components of the base library�

and may also present additional� array�speci	c param�
eters to the user� This is because the generic forms in
our base library will instantiate array�speci	c subcom�
ponents when possible� Thus� the generic counter will
instantiate and bene	t from array speci	c adders�

Currently� the generator framework has been used
to construct a library for the Xilinx ����E series��
 of
Field Programmable Gate Arrays� This library pro�
vides several high�level components� including adders�
counters� �ip��ops� and multipliers� These compo�
nents are all parameterized� allowing them to imple�
ment functional blocks of arbitrary bit�width� A sam�
ple of the available library components is listed in Ta�
ble �� Also included are several low�level components�
including tri�state bu�ers� and Xilinx input�output
pads� Additionally� all Xilinx library elements can
create XNF netlists� perform partial evaluation� and
simulate synchronous designs�

However� we have designed our library structure to
facilitate portability of our system between gate ar�
ray families� All the common parts in the array spe�
ci	c libraries inherit from generic versions contained
within the parts package� These generic versions in�
clude all the simulation� partial evaluation� and simi�
lar functionality common to all implementations� Ad�
ditionally� these generic versions create their internal
structure out of array speci	c components� Thus�
the generic counter will use array�optimized adders if
available�

This behavior allows the initial porting to a new
FPGA family to occur relatively quickly� All the
porter needs to do to target a new FPGA is provide
target speci	c netlist routines for BinOp� FlipFlop�
and IOBlock� Afterwards� the porter can further re�



	ne the other components to take advantage of ar�
ray speci	c features such as carry chains and tri�state
bu�ers� as well as provide components which directly
express these array features�

� Simulation

One of the powerful features of the generator frame�
work is the ability to perform cycle�accurate simula�
tions of synchronous designs and automatically refer�
ence the results with a behavioral description of the
design� all within the generator framework� The sim�
ulation routines have the ability to accept either an
input vector or an object which generates patterns�
and automatically generate warnings when inconsis�
tencies are developed�

The simulator currently operates in a simple man�
ner� It 	rst sets the chosen wires to the speci	ed val�
ues� either by using the supplied input�vector or by
calling the test�pattern generator� The simulator then
examines all components which use the chosen wires
as inputs� If any of these components implement a
simulate routine� this routine is called�

The simulate�� method is contained in all library
components and may be included in user�design com�
ponents� examines the component�s inputs and� if pos�
sible� assigns outputs� If the output was unassigned�
the value is now assigned and the simulation routines
for any connected components are called� If the out�
put was already assigned� nothing happens unless the
previous assignment was to a di�erent value� which
causes the simulator to issue a warning�

This process iterates until no more changes occur�
by simply maintaining a queue of objects which need
to be examined and processing that queue until it is
empty� When the process is complete� all wires which
are unassigned issue further warnings� Then all cur�
rent values are transfered to a slot recording the value
at the last cycle� the current values are reset to unas�
signed� the input wires are set to the new value� and
the process repeats�

Since this is integrated into the generator frame�
work� there is no need for an external simulator
for functional testing� Furthermore� since high�level
components are concurrently simulated with low�level
components� this allows a generator�writer to compose
a simple behavioral description in Java and have it
compared with the structural description� all within
the uni	ed framework�

The only major caveat is that the simulator only
works properly on fully synchronous designs or com�

binational logic� since the runtime system can�t dif�
ferentiate between asynchronous feedback and incon�
sistencies in the design� Although this might be awk�
ward� we don�t 	nd this to be a serious limitation� as
most �well formed� FPGA�based computational tasks
do not posses asynchronous signals� with the excep�
tion of asynchronous �ip��op resets which will gener�
ate spurious warnings when used�

� Partial Evaluation

One of the signi	cant potential advantages for re�
con	gurable computing is the ability to reduce the
complexity and increase the performance of a design
by specializing around known or rarely changing in�
puts� As a simple example� a Finite Impulse Response
�FIR� 	lter is signi	cantly smaller when specialized
around its coe�cient weights� By performing a series
of table lookups and adds instead of general purpose
multiplications� it is possible to make the design both
smaller and faster� This is one of the primary means
which recon	gurable computing expects to see major
performance advantages over conventional computa�
tion�

We accomplish such specializations in two ways� ��
a generator can accept parameters for specialized de�
signs� and �� a generator can restructure itself to form
a specialized instance when some of its inputs become
known� either due to some runtime data available after
the generator is instantiated or revealed as a side�e�ect
of other generators being optimized� The 	rst method
is obvious and intrinsically available in all generator
systems� the second is rather unique to most FPGA
development systems and generally referred to as par�
tial evaluation��

Partial evaluation is accomplished by 	rst assign�
ing any inputs which are of known value� Then� each
component which uses these connections has a chance
to examine its inputs and� if possible� rearrange its
internal structure� calculate its outputs� or remove it�
self completely� This process iterates until no more
changes can be accomplished� Since outputs can be
de	ned but not unde	ned� this process is guaranteed
to converge�

This is a signi	cantly more powerful technique than
the standard constant�propagation supported by most
toolsets� For example� a multiplier composed of a se�
ries of AND gates and adders will be reduced by con�
stant propagation if the multiplier is a constant but

�Partial evaluation has a long history within programming
language systems�



not if the multiplicand is constant� With partial eval�
uation� the multiplier can restructure itself if either the
multiplier or multiplicand is a constant� Furthermore�
if the restructuring takes advantage of the algebra of
multiplication when it conducts its restructuring� it
will guarantee that at most n��
� adders are required
to multiply a number by an n�bit constant� Even more
sophisticated multipliers� such as those involving table
lookups� could be implemented�

It is also insu�cient to do such transformations
solely when a component is created� For example�
if only constructor speci	ed specializations were al�
lowed� an FIR 	lter which wishes to bene	t from spe�
cialized multipliers would need to provide a separate
set of constructors for constant coe�cients� And any
component which uses the FIR 	lter also would need
to acknowledge these specializations� Furthermore� if
the multiplier has specialization routines added to it�
the FIR implementation would need to be changed to
take advantage of the additional functionality� By us�
ing partial evaluation� it is possible for the user of an
FIR component to bene	t from specialized multipli�
cations� even when the FIR component itself does not
consider such specializations�

The programmer can easily provide partial evalua�
tion routines for his components� by simply de	ning
an evaluate��method which examines its inputs and
calculates its outputs� As an example� the following
is a partial evaluation method for the multi�bit adder
example��

public class Adder extends GenComponent�

���

public void evaluate���

long aval 	 �� bval 	 �� cval 	 ��

boolean valueKnown 	 false�

if�a 		 null 

 a�isValueKnown����

valueKnown 	 true�

�� we treat nulls as ground

aval 	 �a 		 null� � � �

a�getValue���

�

if�b 		 null 

 b�isValueKnown����

bval 	 �b 		 null� � � �

b�getValue���

� else �

valueKnown 	 false�

�

if�cin 		 null 



�Once again� this is a somewhat synthetic example since the

logic functions which make up the adder will perform this opti�
mization� although not quite as e�ciently�

cin�isValueKnown����

cval 	 �cin 		 null� � � �

cin�getValue���

� else �

valueKnown 	 false�

�

if�valueKnown��

sum�setValue��aval � bval � cval�

� ��� �� width� � ����

cout�setValue�

��aval �

��� �� width� � ��� �

�bval �

��� �� width� � ��� �

cval�

�	 �� �� width� � � � ���

removeComponent���

�

�

�

This combines well with an additional feature of
our system� the ability to save a partially completed
design for use later� We eventually envision that a
design is created and optimized� then stored in an in�
ternal representation� When an actual instance is de�
sired� the intermediate representation can be reloaded�
additional optimizations can occur� and then the 	nal
netlist is created�

� Application 	�
 DNA pattern
matching

An application implemented in the generator
framework was DNA sequence matching� as it is a well
understood problem within recon	gurable computing�
This problem was one of the primary applications on
the Splash systolic array��
� DNA sequence match�
ing is usually implemented as a dynamic program�
ming algorithm designed to calculate edit�distance�
with a systolic implementation requiring O�m� space
and O�n� time� with m and n being the length of the
strings being compared�

The generator implementation is a ��bit edit�
distance calculation which is specialized both on the
string being matched and the initial value for the sys�
tolic cell� resulting in a design which requires less then
� Xilinx CLBs per character matched� This design is
completely equivalent to an implementation created
using schematic capture� both in design and perfor�
mance�



The primary advantage of the generator is the ease
of creating a specialized instance� Instead of hand se�
lecting or generating a schematic by choosing from ��
separate� not quite identical cell designs� a single cell
was created which accepts the appropriate parameters�
and another generator was created which instantiated
and connected a series of the systolic cells with the
correct parameters�

The specialization itself o�ers signi	cant bene	ts�
The fully specialized version requires � CLBs on a Xil�
inx ����� while one which can serially load a string
would require � CLBs� resulting in a ��� savings in
area� Since most applications of this edit�distance cal�
culation involve comparing a single string against a
large database� this is a natural target for specializa�
tion�

The top�level generator contains a main routine
which accepts the string being matched and creates
an XNF 	le which implements this function� It ac�
complishes this task by 	rst creating a DNAtest ob�
ject and then calling the XNF�creation service on the
resulting object� Since the time it takes to create a
specialized instance is critical� we attempt to have our
system operate as fast as possible� The current run�
time performance is decent but not excellent� requiring
�� seconds to generate an XNF netlist for a �� cell ex�
ample� running under JDK����� on an UltraSPARC�
����

� Application 	�
 portions of the
RAW benchmarks

The Raw benchmarks��
 are a series of micro�
benchmarks designed to test recon	gurable devices
and development tools� Each benchmark consists of
verilog for a single computational cell� verilog for a set
of control logic� and a small C program� which tiles a
speci	ed number of cells together�

We reimplemented several instances of the RAW
benchmarks� life� bubblesort� jacobi� nqueens�
and mergesort� For each benchmark we created
a generator version� which we used to create an
XNF netlist while running in the JDK����� bytecode
interpreter�	� We timed how long it took for the java
program to execute and produce the desired netlist�
Ingo Schaefer of Synopsys took the corresponding ver�
ilog and mapped it to an XNF netlist using FPGA Ex�

�Essentially an ad�hoc generator
�	Early experimentation with JDK	��beta� with a just in

time bytecode compiler showed speedups of 
�� over the same
generator running in the 	�	�� bytecode interpreter�

execution time �M�SS�
benchmark parameters generator verilog
bubblesort �� ��bit cells ���� ����
jacobi �� �� ���bits ���� ����
life ��� �� �� iterations ���� ����
mergesort � ���bit cells ���� ����
nqueens � rows� � cycles ���� ����

Table �� Parameters and tool runtime for the RAW
benchmarks

design size max delay
benchmark generator verilog generator verilog
bubblesort ��� CLBs ��� CLBs �� ns �� ns
jacobi ��� CLBs ��� CLBs �� ns �� ns
life �� CLBs ��� CLBs �� ns �� ns
mergesort ��� CLBs ��� CLBs �� ns �� ns
nqueens ��� CLBs �� CLBs �� ns �� ns

Table �� RAW benchmark 	nal designs

press on a ��� MHz Sun Ultra�� We used a compara�
ble ��� MHz UltraSPARC � to execute our generator
versions of each benchmark� Then we compared the
results from the generator and the results provided
by Synopsys by running the generated XNF netlists
through the Xilinx M� toolkit version M����� �run�
ning on a P� ��� under Windows NT for us� on an
UltraSPARC for Synopsys� for a Xilinx ����e�� ���
We compared the stated maximum worst�case delay
and LUT utilization between the two designs� as well
as the time to create the XNF netlist� Not included in
the times are the compile time and runtime required to
create the RAW benchmark�s verilog instances� or the
compile time necessary to create the java generators���

The poor performance of our system while creating
an instance of the life benchmark points out the de�
	ciencies in our system with respect to random logic�
which expands out to numerous � input boolean op�
erations which stress our traversal and maintenance
routines� Since we need to visit and maintain consid�
erable information about every object in our system�
designs which consist of numerous small objects will
require more time to create netlists then designs con�
sisting of a few large monolithic blocks� The reason

��All instances of the benchmarks required roughly 
 to 	

minutes for the Xilinx tools to map a design from XNF to a
bit�le for the targeted array� with both the generator and HDL
version taking roughly equal time�

��It requires �� seconds to build the entire generator frame�
work including the generic runtime� Xilinx library� and all test�

cases and benchmarks we implemented� Compiling just the Life
benchmark requires � seconds�



for our design being smaller is that it was somewhat
easier to express the calculation in the life cell in a way
which ends up more conducive to the logic trimming
which occurs at the edge of each cell�

Otherwise� the results are always time competitive
although not always area competitive with HDL based
systems� This is largely due to lower level optimiza�
tions which the HDL systems implement but are not
present in our system�

�� Conclusions

As seen in tables � and �� our current generator
framework creates designs which are comparable with
current mature FPGA tool�ows in performance� and
often comparable in area� while being signi	cantly
faster at mapping many datapath oriented designs�
even when running in a bytecode interpreter�

Our generator system o�ers many features not
present in other systems� including the ability to o�er
integrated simulation which automatically compares a
behavioral description with the structural result� par�
tial evaluation and the ability to specify high level
optimizations� and the ability to easily integrate fur�
ther optimizations into our framework� We expect to
continue to develop this framework by adding further
extensions including placement and verilog output� in�
terfaces to other tools� and focusing on improving run�
time performance�

�� Acknowledgments

Many thanks to Randy Huang and Tim Callahan
for their expert assistance with the development tools�
Jonathan Babb for assistance with the RAW bench�
mark suite� and Ingo Schaefer of Synopsys for provid�
ing us with the RAW benchmark numbers for FPGA
Express�

References

��
 Jonathan Babb� Matthew Frank� Victor Lee� El�
liot Waingold� Rajeev Barua� Michael Taylor�
Jang Kim� Sirkrishna Devabhaktuni� and Anant
Agarwal� The RAW Benchmark Suite� Computa�
tion Structures for General Purpose Computing�
In IEEE Symposium on Field�Programmable Cus�
tom Computing Machines� Napa Valley� CA� April
�����

��
 Patrice Bertin and Herve Touati� �PAM Program�
ming Environments� Practice and Experience�� In
IEEE Workshop on FPGAs for Custom Comput�
ing Machines� Napa Valley� CA� April �����

��
 James Gosling� Bill Joy� and Guy Steele� The Java
Language Speci�cation� Addison Wesley� �����

��
 Tauati Herve and Mark Shand� �PamDC� a
C

 Library for the Simulation and Genera�
tion of Xilinx FPGA Designs�� March ��� �����
http���www�research�digital�com�SRC�pamette�PamDC�pdf�

��
 Dzung Hoang� �Searching Genetic Databases on
Splash ��� in Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines� April
�����

��
 Tom Kean� Bernie New� and Bob Slous� �A Fast
Constant Coe�cient Multiplier for the XC������
In Field Programmable Logic �	�

��
 O Mencer� M Morf� and M Flynn� �PAM�Blox�
High performance FPGA Design for Adaptive
Computing�� in Proceedings of the IEEE Sympo�
sium on Field Programmable Custom Computing
Machine� April �����

��
 Charle Rupp� D� User�s Guide�

��
 Xilinx Corporation� The Programmable Logic Data
Book�


