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Abstract
Computer worms — malicious, self-propagating pro-

grams — represent a significant threat to large networks.
One possible defense,containment, seeks to limit a worm’s
spread by isolating it in a small subsection of the network.
In this work we develop containment algorithms suitable
for deployment in high-speed, low-cost network hardware.
We show that these techniques can stop a scanning host af-
ter fewer than 10 scans with a very low false-positive rate.
We also augment this approach by devising mechanisms
for cooperationthat enable multiple containment devices
to more effectively detect and respond to an emerging in-
fection. Finally, we discuss ways that a worm can attempt
to bypass containment techniques in general, and ours in
particular.

1 Introduction

Computer worms — malicious, self propagating programs
— represent a substantial threat to large networks. Since
these threats can propagate more rapidly than human re-
sponse [24, 12], automated defenses are critical for detect-
ing and responding to infections [13]. One of the key de-
fenses against scanning worms which spread throughout
an enterprise iscontainment[28, 23, 21, 7, 14]. Worm
containment, also known as virus throttling, works by de-
tecting that a worm is operating in the network and then
blocking the infected machines from contacting further
hosts. Currently, such containment mechanisms only work
againstscanningworms [27] because they leverage the
anomaly of a local host attempting to connect to multiple
other hosts as the means of detecting an infectee.

Within an enterprise, containment operates by break-
ing the network into many small pieces, orcells. Within
each cell (which might encompass just a single machine),
a worm can spread unimpeded. But between cells, con-
tainment attempts to limit further infections by blocking
outgoing connections from infected cells.

A key problem in containment of scanning worms is
efficiently detecting and suppressing the scanning. Since

containmentblockssuspicious machines, it is critical that
the false positive rate be very low. Additionally, since a
successful infection could potentially subvert any software
protections put on the host machine, containment is best
effected inside the network rather than on the end-hosts.

We have developed a scan detection and suppression al-
gorithm based on a simplification of the Threshold Ran-
dom Walk (TRW) scan detector [9]. The simplifications
make our algorithm suitable for both hardware and soft-
ware implementation. We use caches to (imperfectly) track
the activity of both addresses and individual connections,
and reduce the random walk calculation of TRW to a sim-
ple comparison. Our algorithm’s approximations generally
only cost us a somewhat increased false negative rate; we
find that false positives do not increase.

Evaluating the algorithm on traces from a large (6,000
host) enterprise, we find that with a total memory usage
of 5 MB we obtain good detection precision while staying
within a processing budget of at most 4 memory accesses
(to two independent banks) per packet. In addition, our
algorithm can detect scanning which occurs at a threshold
of one scan per minute, much lower than that used by the
throttling scheme in [28], and thus significantly harder for
an attacker to evade.

Our trace-based analysis shows that the algorithms are
both highly effective and sensitive when monitoring scan-
ning on an Internet access link, able to detect low-rate TCP
and UDP scanners which probe our enterprise. One defi-
ciency of our work, however, is that we were unable to ob-
tain internal enterprise traces. These can be very difficult to
acquire, but we are currently pursuing doing so. Until we
can, the efficacy of our algorithm when deployed internal
to an enterprise can only be partly inferred from its robust
access-link performance.

We have also investigated how to enhance containment
throughcooperationbetween containment devices. Worm
containment systems have anepidemic threshold: if the
number of vulnerable machines is few enough relative to a
particular containment deployment, then containment will
almost completely stop the worm [21]. However, if there



are more vulnerable machines, then the worm will still
spread exponentially (though less than in the absence of
containment). We show that by adding a simple inter-cell
communication scheme, the spread of the worm can be dra-
matically mitigated in the case where the system is above
its epidemic threshold.

Finally, we discuss inadvertent and malicious attacks on
worm containment systems: what is necessary for an at-
tacker to create either false negatives (a worm which evades
detection) or false positives (triggering a response when a
worm did not exist), assessing this for general worm con-
tainment, cooperative containment, and our particular pro-
posed system. We specifically designed our system to resist
some of these attacks.

2 Worm Containment

Worm containment is designed to halt the spread of a worm
in an enterprise by detecting infected machines and pre-
venting them from contacting further systems. Current ap-
proaches to containment [28, 21, 19] are based on detecting
the scanning activity associated with scanning worms, as is
our new algorithm.

Scanning worms operate by picking “random” addresses
and attempting to infect them. The actual selection tech-
nique can vary considerably, from linear scanning of an ad-
dress space (Blaster [25]), fully random (Code Red [6]),
a bias toward local addresses (Code Red II [4] and
Nimda [3]), or even more enhanced techniques (Permuta-
tion Scanning [24]). While future worms could alter their
style of scanning to try to avoid detection, all scanning
worms share two common properties: most scanning at-
tempts result in failure, and infected machines will institute
many connection attempts.1 Because containment looks for
a class of behavior rather than specific worm signatures,
such systems can stopnew(scanning) worms.

Robust worm defense requires an approach like contain-
ment because we know from experience that worms can
find (by brute force) small holes in firewalls [4], VPN tun-
nels from other institutions , infected notebook comput-
ers [25], web browser vulnerabilities [3], and email-borne
attacks [3] to establish a foothold in a target institution.
Many institutions with solid firewalls have still succumbed
to worms that entered through such means. Without con-
tainment, even a single breach can lead to a complete inter-
nal infection.

Along with the epidemic threshold (Section 2.1) and sus-
tained sub-threshold scanning (Section 2.2), a significant
issue with containment is the need for complete deploy-
ment within an enterprise. Otherwise, any uncontained-
but-infected machines will be able to scan through the en-

1There are classes of worms—topological, meta-server, flash (during
their spreading phase, once the hit-list has been constructed), and conta-
gion [27]—that donot exhibit such scanning behavior. Containment for
such worms remains an important, open research problem.

terprise and infect other systems. (A single machine, scan-
ning at only 10 IP addresses per second, can scan through
an entire/16 in under 2 hours.)

Thus, we strongly believe that worm-suppression needs
to be built into the network fabric. When a worm compro-
mises a machine, the worm can defeat host software de-
signed to limit the infection; indeed, it is already common
practice for viruses and mail-worms to disable antivirus
software, so we must assume that future worms will dis-
able worm-suppression software.

Additionally, since containment works best when the
cells are small, this strongly suggests that worm con-
tainment needs to be integrated into the network’s outer
switches or similar hardware elements, as proximate to the
end hosts as economically feasible. This becomes even
more important for cooperative containment (Section 6), as
this mechanism is based on some cells becoming compro-
mised as a means of better detecting the spread of a worm
and calibrating the response necessary to stop it.

2.1 Epidemic Threshold

A worm-suppression device must necessarily allow some
scanning before it triggers a response. During this time,
the worm may find one or more potential victims. Stani-
ford [21] discusses the importance of this “epidemic thresh-
old” to the worm containment problem. If on average an in-
fected computer can find more than a single victim before a
containment device halts the worm instance, the worm will
still grow exponentially within the institution (until the av-
erage replication rate falls below 1.0).

The epidemic threshold depends on

• the sensitivity of the containment response devices

• the density of vulnerable machines on the network

• the degree to which the worm is able to target its ef-
forts into the correct network, and even into the cur-
rent cell

Aside from cooperation between devices, the other options
to raise the epidemic threshold are to increase the sensitiv-
ity of the scan detector/suppressor, reduce the density of
vulnerable machines by distributing potential targets in a
larger address space, or increase the number of cells in the
containment deployment.

One easy way to distribute targets across a larger address
space arises if the enterprise’s systems use NAT and DHCP.
If so, then when systems acquire an address through DHCP,
the DHCP server can select a random address from within
a private /8 subnet (e.g., 10.0.0.0/8). Thus, an institution
with 216 workstations could have an internal vulnerability
density of216/224 = 1/256, giving plenty of headroom
for relatively insensitive worm-suppression techniques to
successfully operate.



Alternatively, we can work to make the worm detection
algorithm more accurate. The epidemic threshold is di-
rectly proportional to the scan thresholdT : the faster we
can detect and block a scan, the more vulnerabilities there
can be on the network without a worm being able to get
loose. Thus, we desire highly sensitive scan-detection al-
gorithms for use in worm containment.

2.2 Sustained Scanning Threshold

In addition to the epidemic threshold, many (but not all)
worm containment techniques also have asustained scan-
ning threshold: if a worm scans slower than this rate, the
detector will not trigger. Although there have been sys-
tems proposed to detect very stealthy scanning [22], these
systems are currently too resource-intensive for use in this
application.

Even a fairly low sustained scanning threshold can en-
able a worm to spread if the attacker engineers the worm
to avoid detection. For example, consider the spread of a
worm in an enterprise with256 (28) vulnerable machines
distributed uniformly in a contiguous/16 address space. If
the worm picks random addresses from the entire Internet
address space, then we expect only1 in 224 scans to find
another victim in the enterprise. Thus, even with a very
permissive sustained scanning threshold, the worm will not
effectively spread within the enterprise.

But if the worm biases its scanning such that1/2 the ef-
fort is used to scan the local/16, then on average it will
locate another target within the enterprise after29 scans.
If the threshold is one scan per second (the default for
Williamson’s technique [28]), then the initial population’s
doubling time will be approximately29 seconds, or once
every 8.5 minutes. This doubling time is sufficient for a
fast-moving worm, as the entire enterprise will be infected
in less than two hours. If the worm concentrates its entire
scanning within the enterprise’s /16, the doubling time will
be about four minutes.

Thus, it is vital to achieve as low a sustained scanning
threshold as possible. For our concrete design, we target
a threshold of 1 scan per minute. This would change the
doubling times for our example above to 8.5 and 4 hours
respectively — slow enough that humans can notice the
problem developing and take additional action. Achieving
such a threshold is a much stricter requirement than that
proposed by Williamson, and forces us to develop a differ-
ent scan-detection algorithm.

3 Scan Suppression

The key component for today’s containment techniques
is scan suppression: responding to detectedportscansby
blocking future scanning attempts. Portscans—probe at-
tempts to determine if a service is operating at a target IP
address—are used by both human attackers and worms to

discover new victims. Portscans have two basic types:hor-
izontal scans, which search for an identical service on a
large number of machines, andverticalscans, which exam-
ine an individual machine to discover all running services.
(Clearly, an attacker can also combine these and scan many
services on many machines. For ease of exposition, though,
we will consider the two types separately.)

The goal of scan suppression is often expressed in terms
of preventing scans coming from “outside” inbound to the
“inside.” If “outside” is defined as the external Internet,
scan suppression can thwart naive attackers. But it can’t
prevent infection from external worms because during the
early portion of a worm outbreak an inbound-scan detector
may only observe a few (perhaps only single) scans from
any individual source. Thus, unless the suppression device
halts all new activity on the target port (potentially disas-
trous in terms of collateral damage), it will be unable to
decide, based on a single request from a previously unseen
source, whether that request is benign or an infection at-
tempt.

For wormcontainment, however, we turn the scan sup-
pressor around: “inside” becomes the enterprise’s larger
internal network, to be protected from the “outside” local
area network. Now any scanning worm will be quickly de-
tected and stopped, because (nearly)all of the infectee’s
traffic will be seen by the detector.

We derived our scan detection algorithm from TRW
(Threshold Random Walk) scan detection [9]. In abstract
terms, the algorithm operates by using an oracle to deter-
mine if a connection will fail or succeed. A successfully
completed connection drives a random walk upwards, a
failure to connect drives it downwards. By modeling the
benign traffic as having a different (higher) probability of
success than attack traffic, TRW can then make a decision
regarding the likelihood that a particular series of connec-
tion attempts from a given host reflect benign or attack ac-
tivity, based on how far the random walk deviates above or
below the origin. By casting the problem in a Bayesian ran-
dom walk framework, TRW can provide deviation thresh-
olds that correspond to specific false positive and false neg-
ative rates, if we can parameterize it with gooda priori
probabilities for the rate of benign and attacker connection
successes.

To implement TRW, we obviously can’t rely on hav-
ing a connection oracle handy, but must instead track con-
nection establishment. Furthermore, we must do so us-
ing data structures amenable to high-speed hardware im-
plementation, which constrains us considerably. Finally,
TRW has one added degree of complexity not mentioned
above. It only considers the success or failure of connec-
tion attempts tonewaddresses. If a source repeatedly con-
tacts the same host, TRW does its random walk accounting
and decision-making only for the first attempt. This ap-
proach inevitably requires a very large amount of state to
keep track of which pairs of addresses have already tried



to connect, too costly for our goal of a line-rate hardware
implementation. As developed in Section 5, our technique
uses a number of approximations of TRW’s exact book-
keeping, yet still achieves quite good results.

There are two significant alternate scan detection mech-
anisms proposed for worm containment. The first is the
new-destination metric proposed by Williamson [28]. This
measures the number of new destinations a host can visit
in a given period of time, usually set to 1 per second. The
second is dark-address detection, used by both Forescout
[7] and Mirage Networks [14]. In these detectors, the de-
vice routes or knows some otherwise unoccupied address
spaces within the internal network and detects when sys-
tems attempt to contact these unused addresses.

4 Hardware Implementations

When targeting hardware, memory access speed, memory
size, and the number of distinct memory banks become crit-
ical design constraints, and, as mentioned above, these re-
quirements drive us to use data structures that sometimes
only approximate the network’s state rather than exactly
tracking it. In this section we discuss these constraints and
some of our design choices to accommodate them. The
next section then develops a scan detection algorithm based
on using these approximations.

Memory access speed is a surprisingly significant con-
straint. During transmission of a minimum-sized gigabit
Ethernet packet, we only have time to access a DRAM
at 8 different locations. If we aim to monitor both direc-
tions of the link (gigabit Ethernet is full duplex), our bud-
get drops to 4 accesses. The situation is accordingly even
worse for 10-gigabit networks: DRAM is no longer an op-
tion at all, and we must use much more expensive SRAM.
If an implementation wishes to monitor several links in par-
allel, this further increases the demand on the memory as
the number of packets increases.

One partial solution for dealing with the tight DRAM ac-
cess budget is the use of independent memory banks allow-
ing us to access two distinct tables simultaneously. Each
bank, however, adds to the overall cost of the system. Ac-
cordingly, we formulated a design goal of no more than
4 memory accesses per packet to 2 separate tables, with
each table only requiring two accesses: a read and a write
to the same location.

Memory size can also be a limiting factor. For the near
future, SRAMs will only be able to hold a few tens of
megabytes, compared with the gigabits we can store in
DRAMs. Thus, our ideal memory footprint is to stay under
16 MB. This leaves open the option of implementing us-
ing only SRAM, and thus potentially running at 10 gigabit
speeds.

Additionally, software implementations can also benefit
from using the approximations we develop rather than ex-
act algorithms. Since our final algorithm indeed meets our

design goals—less than 16 MB of total memory (it is highly
effective with just 5 MB) and 2 uncached memory accesses
per packet—it could be included as a scan detector within
a conventional network IDS such as Bro [16] or Snort [20],
replacing or augmenting their current detection facilities.

4.1 Approximate Caches

When designing hardware, we often must store information
in a fixed volume of memory. Since the information we’d
like to store may exceed this volume, one approach is to use
anapproximate cache: a cache for which collisions cause
imperfections. (From this perspective, a Bloom filter is a
type of approximation cache [2].) This is quite different
from the more conventional notion of a cache for which,
if we find an entry in the cache, we know exactly what it
means, but a failed lookup requires accessing a large sec-
ondary data-store, or of a hash table, for which we will al-
ways find what we put in it earlier, but it may grow beyond
bound. Along with keeping the memory bounded, approx-
imate caches allow for very simple lookups, a significant
advantage when designing hardware.

However, we then must deal with the fact that colli-
sions in approximate caches can have complicated seman-
tics. Whenever two elements map to the same location in
the cache, we must decide how to react. One option is to
combine distinct entries into a single element. Another is
to discard either the old entry or the new entry. Accord-
ingly, collisions, oraliasing, create two additional security
complications: false positives or negatives due to the pol-
icy when entries are combined or evicted, and the possibil-
ity of an attacker manipulating the cache to exploit these
aliasing-related false outcomes.

Since the goal of our scan-suppression algorithm is to
generate automatic responses, we consider false positives
more severe than false negatives, since they will cause an
instance of useful traffic to be completely impaired, de-
grading overall network reliability. A false negative, on the
other hand, often only means that it takes us longer to detect
a scanner (unless the false negative is systemic). In addi-
tion, if we can structure the system such that several pos-
itives or negatives must occur before we make a response
decision, then the effect will be mitigated if they are not
fully correlated.

Thus, we decided to structure our cache-based approx-
imations to avoid creating additional false positives. We
can accomplish this by ensuring that, when removing en-
tries or combining information, the resulting combination
could only create a false negative, as discussed below.

Attackers can exploit false negatives or positives by ei-
ther using them to create worms that evade detection, or by
triggering responses to impair legitimate traffic. Attacker
can do so through two mechanisms: predicting the hashing
algorithm, or simply overwhelming the cache.

The first attack, equivalent to the algorithm complexity
attacks described by Crosby and Wallach [5], relies on the



attacker using knowledge of the cache’s hash function to
generate collisions. For Crosby’s attack, the result was to
increase the length of hash chains, but for an approximation
cache, the analogous result is a spate of evicted or com-
bined entries, resulting in excess false positives or nega-
tives. A defense against it is to use a keyed hash function
whose output the attacker cannot predict without knowing
the key.

The second attack involves flooding the cache in order
to hide a true attack by overwhelming the system’s ability
to track enough network activity. This could be accom-
plished by generating a massive amount of “normal” ac-
tivity to cloak malicious behavior. Unlike the first attack,
overwhelming the cache may require substantial resources.

While such attacks are a definite concern (see also
Section 7), approximate caching is vital for a high-
performance hardware implementation. Fortunately, as
shown below, we are able to still obtain good detection re-
sults even given the approximations.

4.2 Efficient Small Block Ciphers

Another component in our design is the use of small (32 bit)
block ciphers. AnN -bit block cipher is equivalent to an
N -bit keyed permutation: there exists a one-to-one map-
ping between every input word and every output word, and
changing the key changes the permutation.

In general, large caches are either direct-mapped, where
any value can only map to one possible location, orN -
way associative. Looking up an element in a direct-mapped
cache requires computing the index for the element and
checking if it resides at that index. In an associative cache,
there areN possible locations for any particular entry, ar-
ranged in a contiguous block (cache line). Each entry in an
associative cache includes a tag value. To find an element,
we compute the index and then in parallel check all pos-
sible locations based on the tag value to determine if the
element is present.

Block ciphers give us a way to implement efficiently
tagged caches that resist attackers predicting their collision
patterns. They work by, rather than using the initialN -
bit value to generate the cache index and tag values, first
permuting theN -bit value, after which we separate the re-
sulting N -bit value into an index and a tag. If we usek
bits for the index, we only needN − k bits for the tag,
which can result in substantial memory savings for larger
caches. If the block-cipher is well constructed and the key
is kept secret from the attacker, this will generate cache in-
dices that attackers cannot predict. This approach is often
superior to using a hash function, as although a good hash
function will also provide an attacker-unpredictable index,
the entireN -bit initial value will be needed as a tag.

Ciphers that work well in software are often inefficient
in hardware, and vice versa. For our design, we used a
simple 32 bit cipher based on the Serpent S-boxes [1], par-

ticularly well-suited for FPGA or ASIC implementation as
it requires only 8 levels of logic to compute.

5 Approximate Scan Suppression

Our scan detection and suppression algorithm approxi-
mates the TRW algorithm in a number of ways. First, we
track connections and addresses using approximate caches.
Second, to save state, rather than only incorporating the
success or failure of connection attempts to new addresses,
we do so for attempts to new addresses, new ports at old
addresses, and old ports at old addresses if the correspond-
ing entry in our state table has timed out. Third, we do not
ever make a decision that an address is benign; we track ad-
dresses indefinitely as long as we do not have to evict their
state from our caches.

We also extend TRW’s principles to allow us to detect
vertical as well as horizontal TCP scans, and also horizon-
tal UDP scans, while TRW only detects horizontal TCP
scans. Finally, we need to implement a “hygiene filter” to
thwart some stealthy scanning techniques without causing
undue restrictions on normal machines.

Figure 1 gives the overall structure of the data structures.
We track connections using a fixed-sized table indexed by
hashing the “inside” IP address, the “outside” IP address,
and, for TCP, the inside port number. Each record consists
of a 6 bit age counter and a bit for each direction (inside to
outside and outside to inside), recording whether we have
seen a packet in that direction. This table combines en-
tries in the case of aliasing, which means we may consider
communication to have been bidirectional when in fact it
was unidirectional, turning a failed connection attempt into
a success (and, thus, biasing towards false negatives rather
than false positives).

We track external (“outside”) addresses using an associa-
tive approximation cache. To find an entry, we encrypt the
external IP address using a 32 bit block cipher as discussed
in Section 4.2, separating the resulting 32 bit number into
an index and a tag, and using the index to find the group (or
line) of entries. In our design, we use a 4-way associative
cache, and thus each line can contain up to four entries,
with each entry consisting of the tag and a counter. The
counter tracks the difference between misses and hits (i.e.,
successful and unsuccessful connection attempts), forming
the basis of our detection algorithm.

Whenever the device receives a packet, it looks up the
corresponding connection in the connection table and the
corresponding external address in the address table. Per
Figure 2, the status of these two tables, and the direction of
the packet, determines the action to take, as follows:

For a non-blocked external address (one we have not
already decided to suppress), if a corresponding connec-
tion has already been established in the packet’s direction,
we reduce the connection table’s age to 0 and forward the
packet. Otherwise, if the packet is from the outside and



Proto  SrcIP  DestIP SrcPort  DestPort   Payload
Packet:

Extract from Packet:
InsideIP,  OutsideIP,  InsidePort

Connection Cache Lookup (Direct Mapped):
H(InsideIP, OutsideIP, (proto = TCP) ? InsidePort : 0)

Established   Established    Age
InToOut        OutToIn	

Address Cache Lookup:
E(OutsideIP) -> Index/Tag	

Tag1   Count1    Tag2    Count2  ...

Tag    Count

Cache Line:

Entry:1bit 1bit 6bits
16b       16b

Figure 1: The structure of the connection cache and the address cache. The connection cache tracks whether a connection
has been established in either direction. The age value is reset to 0 every time we see a packet for that connection. Every
minute, a background process increases the age of all entries in the connection cache, removing any idle entry more than
Dconn minutes old. The address cache keeps track of all detected addresses, and records in “count” the difference between
the number of failed and successful connections. EveryDmiss seconds, each positive count in the address cache is reduced
by one.

Condition:
SrcIP = OutsideIP &
Count < Threshhold
If(!EstablishedOutToIn)
    if(EstablishedInToOut)
        # Record as a hit
        Count <- Count - 1
        EstablishedOutToIn <- True
    else if(hygiene_drop)
        Drop packet
    else
        # A possible miss
        Count <- Count + 1
        EstablishedOutToIn <- True
if(!DroppedPacket)
    Age <- 0
    Forward packet

Condition:
SrcIP = OutsideIP &
Count >= Threshhold
# Address is being blocked
if(EstablishedInToOut)
    if(isSYN | isUDP)
        # No matter what, drop
        Drop packet
    else if(!EstablishedOutToIn){
        # Record as a hit
        Count <- Count - 1
        EstablishedOutToIn <- True
    # Internally requested or old
    # connection, so allow
    Age <- 0
    Forward packet
else 
    Drop packet

Condition:
SrcIP = InsideIP

If(!EstablishedInToOut)
    if(EstablishedOutToIn)
        # Was previously
        # recorded as a miss
        # but is now a hit
        Count <- Count - 2
    EstablishedInToOut <- True
Age <- 0
Forward packet

Figure 2: The high level structure of the detection and response algorithm. We count every successful connection (in either
direction) as a “hit”, with all failed or possibly-failed connections as “misses”. If the difference between the number of hits
and misses is greater than a threshold, we block further communication attempts from that address.



we have seen a corresponding connection request from the
inside, we forward the packet and decrement the address’s
count in the address table by 1, as we now credit the outside
address with a successful connection. Otherwise, we for-
ward the packet but increment the external address’s count
by 1, as now that address has one more outstanding, so-far-
unacknowledged connection request.

Likewise, for packets from internal addresses, if there
is a connection establishment from the other direction, the
count is reduced, in this case by 2, since we are changing
our bookkeeping of it from a failure to a success (we pre-
viously incremented the failure-success count by 1 because
we initially treat a connection attempt as a failure).

Thus, the count gives us an on-going estimate of the
difference between the number of misses (failed connec-
tions) and the number of successful connections. Given the
assumption that legitimate traffic succeeds in its connec-
tion attempts with a probability greater than 50%, while
scanning traffic succeeds with a probability less than 50%,
by monitoring this difference we can determine when it is
highly probable that a machine is scanning.

5.1 Blocking and Special Cases

If an address’s count exceeds a predefined thresholdT , the
device blocks it. When we receive subsequent packet from
that address, our action depends on the packet’s type and
whether it matches an existing, successfully-established
connection, which we can tell from the connection status
bits stored in the connection table. If the packet does not
match an existing connection, we drop it. If it does, then we
still drop it if it is a UDP packet or a TCP initial SYN. Oth-
erwise, we allow it through. By blocking in this manner,
we prevent the blocked machine from establishing subse-
quent TCP or UDP sessions, while still allowing it toac-
cept TCP connection requests and continue with existing
connections. Doing so lessens the collateral damage caused
by false positives.

We treat TCP RST, RST+ACK, SYN+ACK, FIN, and
FIN+ACK packets specially. If they do not correspond
to a connection established in the other direction, the hy-
giene filter simply drops these packets, as they could re-
flect stealthy scanning attempts, backscatter from spoofed-
source flooding attacks, or the closing of very-long-idle
connections. Since they might be scans, we need to drop
them to limit an attacker’s information. But since they
might instead be benign activity, we don’t use them to trig-
ger blocks.

Likewise, if a connection has been established in the
other direction, but not in the current direction, then we for-
ward TCP RST, RST+ACK, FIN, and FIN+ACK packets,
but do not change the external address’s counter, to avoid
counting failed connections as successful. (A FIN+ACK
could reflect a successful connectionif we have seen the
connection already established in the current direction, but
the actions here are those we take if we have not seen this.)

5.2 Errors and Aliasing

Because connection table combines entries when aliasing
occurs, it can create a false negative at a rate that depends
on the fullness of the table. If the table is 20% full, then
we will fail to detect roughly 20% of individual scanning
attempts. Likewise, 20% of the successful connection at-
tempts will not serve to reduce an address’s failure/success
count either, because the evidence of the successful con-
nection establishment aliases with a connection table entry
that already indicates a successful establishment.

To prevent the connection table from being overwhelmed
by old entries, we remove any connection idle for more
than an amount of timeDconn, which to make our design
concrete we set toDconn = 10 minutes. We can’t reclaim
table space by just looking for termination (FIN exchanges)
because aliasing may mean we need to still keep the table
entry after one of the aliased connections terminates, and
because UDP protocols don’t have a clear “terminate con-
nection” message.

While the connection table combines entries, the address
table, since it is responsible for blocking connections and
contains tagged data, needs to evict entries rather than com-
bining information. Yet evicting important data can cause
false negatives, requiring a balancing act in the eviction
policy. We observe that standard cache replacement poli-
cies such as least recently used (LRU), round robin, and
random, can evict addresses of high interest. Instead, when
we need to evict an entry, we want to select the entry with
the most negative value for the (miss–hit) count, as this
constitutes the entry least likely to reflect a scanner; al-
though we thus tend to evict highly active addresses from
the table, they represent highly activenormalmachines.

In principle, this policy could occasionally create a tran-
sient false positive, if subsequent connections from the tar-
geted address occur in a very short term burst, with sev-
eral connection attempts made before the first requests can
be acknowledged. We did not, however, observe this phe-
nomenon in our testing.

5.3 Parameters and Tuning

There are several key parameters to tune with our sys-
tem, including the response thresholdT (miss–hit differ-
ence that we take to mean a scan detection), minimum and
maximum counts, and decay rates for the connection cache
and for the counts. We also need to size the caches.

For T , our observations below in Section 5.5 indicate
that for the traces we assessed a threshold of 5 suffices for
blocking inbound scanning, while a threshold of 10 is a
suitable starting point for worm containment.

The second parameters,Cmin andCmax, are the mini-
mum and maximum values the count is allowed to achieve.
Cmin is needed to prevent a previously good address that
is subsequently infected from being allowed too many con-
nections before it is blocked, whileCmax limits how long



it takes before a highly-offending blocked machine is al-
lowed to communicate again. For testing purposes, we set
Cmin to−20, andCmax to∞ as we were interested in the
maximum count which each address could reach in prac-
tice.

The third parameter,Dmiss, is the decay rate for misses.
Every Dmiss seconds, all addresses with positive counts
have their count reduced by one. Doing so allows a low rate
of benign misses to be forgiven, without seriously enabling
sub-threshold scanning. We setDmiss equal to 60 seconds,
or one minute, meeting our sub-threshold scanning goal of
1 scan per minute. In the future, we wish to experiment
with a much lower decay rate for misses.

We use a related decay rate,Dconn, to remove idle con-
nections, since we can’t rely on a “connection-closed” mes-
sage to determine when to remove entries. As mentioned
earlier, we setDconn to 10 minutes.

The final parameters specify the size and associativity
of the caches. A software implementation can tune these
parameters, but a hardware system will need to fix these
based on available resources. For evaluation purposes, we
assumed a 1 million entry connection cache (which would
require 1 MB), and a 1 million entry, 4-way associative ad-
dress cache (4 MB). Both cache sizes worked well with our
traces, although increasing the connection cache to 4 MB
would provide increased sensitivity by diminishing alias-
ing.

5.4 Policy Options

Several policy options and variations arise when using our
system operationally: the threshold of response, whether
to disallow all communication from blocked addresses,
whether to treat all ports as the same or to allow some level
of benign scanning on less-important ports, and whether
to detect horizontal and vertical, or just horizontal, TCP
scans.

The desired initial response thresholdT may vary from
site to site. Since all machines above a threshold of 6 in
our traces represent some sort of scanner (some benign,
most malicious, per Section 5.5), this indicates a thresh-
old of 10 on outbound connections would be conservative
for deployment within our environment, while a threshold
of 5 appears sufficient for incoming connections.

A second policy decision is whether to block all com-
munication from a blocked machine, or to only limit new
connections it initiates. The first option offers a greater de-
gree of protection, while the second is less disruptive for
false positives.

A third decision is how to configureCmin andCmax,
the floor and ceiling on the counter value. We discussed
the tradeoffs for these in the previous section.

A fourth policy option would be to treat some ports
differently than others. Some applications, such as
Gnutella [17], use scanning to find other servers. Like-
wise, at some sites particular tools may probe numerous

machines to discover network topology. One way to give
different ports different weights would be to changing the
counter from an integer to a fixed-point value. For example,
we could assign SNMP a cost of .25 rather than 1, to allow
a greater degree of unidirectional SNMP attempts before
triggering an alarm. We can also weight misses and hits
differently, to alter the proportion of traffic we expect to be
successful for benign vs. malicious sources.

Finally, changing the system to only detect horizontal
TCP scans requires changing the inputs to the connection
cache’s hash function. By excluding the internal port num-
ber from the hash function, we will include all internal
ports in the same bucket. Although this prevents the al-
gorithm from detecting vertical scans, it also eliminates an
evasion technique discussed in Section 7.6.

5.5 Evaluation

We used hour-long traces of packet header collected at
the access link at the Lawrence Berkeley National Labora-
tory. This gigabit/sec link connects the Laboratory’s 6,000
hosts to the Internet. The link sustains an average of about
50–100 Mbps and 8–15K packets/sec over the course of a
day, which includes roughly 20M externally-initiated con-
nection attempts (most reflecting ambient scanning from
worms and other automated malware) and roughly 2M
internally-initiated connections. The main trace we ana-
lyzed was 72 minutes long, beginning at 1:56PM on a Fri-
day afternoon. It totaled 44M packets and included traf-
fic from 48,052 external addresses (and all 131K internal
addresses, due to some energetic scans covering the en-
tire internal address space). We captured the trace using
tcpdump , which reported 2,200 packets dropped by the
measurement process.

We do not have access to the ideal traces for assessing
our system, which would be all internal and external traffic
for a major enterprise. However, the access-link traces at
least give us a chance to evaluate the detection algorithm’s
behavior over high-diverse, high-volume traffic.

We processed the traces using a custom Java application
so we could include a significant degree of instrumenta-
tion, including cache-miss behavior, recording evicted ma-
chines, maintaining maximum and minimum counts, and
other options not necessary for a production system. Ad-
ditionally, since we developed the experimental framework
for off-line analysis, high performance was not a require-
ment. Our goal was to extract the necessary information
to determine how our conceptual hardware design will per-
form in terms of false positives and negatives and quickness
of response.

For our algorithm, we just recorded the maximum count
rather than simulating a specific blocking threshold, so we
can explore the tradeoffs different thresholds would yield.
We emulated a 1 million entry connection cache, and a
1 million entry, 4-way associative address cache. The con-
nection cache reached 20% full during the primary trace.



Anonymized IP Maximum Count Cause

221.147.96.4 16 Benign DNS Scanner? Dynamic DNS host error?
147.95.58.73 12 AFS-Related Control Traffic?

147.95.35.149 12 NetBIOS “Scanning” and activity
147.95.238.71 8 AFS-Related Control Traffic?
144.240.17.50 6 Benign SNMP (UDP) “Scanning”

144.240.96.234 6 NetBIOS “scanning” of a few hosts

Table 1: All outbound connections over a threshold of 5 flagged by our algorithm

The eviction rate in the address cache was very low, with
no evictions when tested with the Internet as “outside,” and
only 2 evictions when the enterprise was “outside.” Thus,
the 5 MB of storage for the two tables was quite adequate.

We first ran our algorithm with the enterprise as outside,
to determine which of its hosts would be blocked by worm
containment and why. We manually checked all alerts that
would be generated for a threshold of 5, shown in Table 1.
Of these, all represented benign scanning or unidirectional
control traffic. The greatest offender, at a count of 16, ap-
pears to be a misconfigured client which resulted in be-
nign DNS scanning. The other sources appears to generate
AFS-related control traffic on UDP ports 7000-7003; scan-
ning from a component of Microsoft NetBIOS file sharing;
and benign SNMP (UDP-based) scanning, apparently for
remotely monitoring printer queues.

With the Internet as “outside,” over 470 external ad-
dresses reached a threshold of 5 or higher. While this seems
incredibly high, it in fact represents the endemic scanning
which occurs continually on the Internet [9]. We manually
examined the top 5 offenders, whose counts ranged from
26,000 to 49,000, and verified that these were all blatant
scanners. Of these, one was scanning for the FTP control
port (21/tcp), two were apparently scanning for a newly dis-
covered vulnerability in Dameware Remote Administrator
(6129/tcp), and two were apparently scanning for a Win-
dows RPC vulnerability (135/tcp; probably from hosts in-
fected with Blaster [25]).

Additionally, we examined the offenders with the lowest
counts above the threshold. 10 addresses had a maximum
count between 20 and 32. Of these, 8 were scans on a Net-
BIOS UDP port 137, targeted at a short (20–40 address) se-
quential range, with a single packet sent to each machine.
Of the remaining two offenders, one probed randomly se-
lected machines in a /16 for a response on TCP port 80
using 3 SYN packets per attempt, while the other probed
randomly selected machines on port 445/tcp with 2 SYN
packets per attempt. All of these offenders represented true
scanners: none is a false positive.

We observed 19 addresses with a count between 5 and
19, where we would particularly expect to see false posi-
tives showing up. Of these, 15 were NetBIOS UDP scan-
ners. Of the remaining 4, one was scanning 1484/udp, one

was scanning 80/tcp, and one was scanning 445/tcp. The
final entry was scanning both 138/udp and generating suc-
cessful communications on 139/tcp and port 80/tcp. The
final entry, which reached a maximum count of 6, repre-
sents a NetBIOS-related false positive.

Finally, we also examined ten randomly selected exter-
nal addresses flagged by our algorithm. Eight were UDP
scanners targeting port 137, while two were TCP scanners
targeting port 445. All represent true positives.

During this test, the connection cache size of 1 million
entries reached about 20% full. Thus, each new scan at-
tempt has a 20% chance of not being recorded because it
aliases with an already-established connection. If the con-
nection cache was increased to 4 million entries (4 MB
instead of 1 MB), the false negative rate would drop to
slightly over 5%.

We conducted a second test to determine the effects of
setting the parameters for maximum sensitivity. We in-
creased the connection cache to 4 million entries, reducing
the number of false negatives due to aliasing. We also tight-
ened theCmin threshold to -5, which increases the sensitiv-
ity to possible misbehavior of previously “good” machines,
and increasedDmiss to infinity, meaning that we never de-
cayed misses. Setting the threshold of response to 5 would
then trigger an alert for an otherwise idle machine once it
made a series of 5 failed connections; while a series of
10 failed connections would trigger an alert regardless of
an address’s past behavior.

We manually examined all outbound alerts (i.e., alerts
generated when considering the enterprise “outside”) that
would have triggered when using this threshold, looking
for additional false positives. Table 2 summarizes these
additional alerts.

We would expect that, by increasing the sensitivity in
this manner, we would observe some non-scanning false
positives. Of the additional alerts, only one new alert was
generated because of the changedCmin. This machine sent
out unidirectional UDP to 15 destinations in a row, which
was countered by normal behavior whenCmin was set to
-20 instead of -5. The rest of the alerts were triggered be-
cause of the reduced decay of misses. In all these cases, the
traffic consisted of unidirectional communication to multi-
ple machines. The TCP-based activity (NNTP, daytime,



Anonymized IP Maximum Count Cause

147.95.61.87 11 NNTP, sustained low rate of failures
147.95.35.154 11 High port UDP, 10 scans in a row

221.147.96.220 9 TCP port 13 (“daytime”), detected due to reduced sub-threshold
144.240.96.234 9 NetBIOS and failed HTTP, detected due to reduced sub-threshold
144.240.28.138 7 High port UDP, due to reduced sub-threshold

147.95.3.27 6 TCP Port 25, due to reduced sub-threshold
147.95.36.165 5 High port UDP, due to reduced sub-threshold

144.240.43.227 5 High port UDP, due to reduced sub-threshold

Table 2: Additional alerts on the outbound traffic generated when the sensitivity was increased.

and SMTP) showed definite failed connections, but these
may be benign failures.

In summary, even with the aggressive thresholds, there
are few false positives, and they appear to reflect quite pe-
culiar traffic.

5.6 Williamson Implementation

For comparison purposes, we also included in our trace
analysis program an implementation of Williamson’s tech-
nique [28], which we evaluated against the site’s outbound
traffic in order to assess its performance in terms of worm
containment. Williamson’s algorithm uses a small cache
of previously-allowed destinations. For all SYNs and any
UDP packets, if we find the destination in the allowed-
destination cache, we forward it regularly. If not, but if the
source has not sent to a new destination (i.e., we haven’t
added anything to its allowed-destination cache) during the
past second, then we put an entry in the cache to note that
we are allowing communication between the source and the
given destination, and again forward the packet.

Otherwise, we add the packet to a delay queue. We pro-
cess this queue at the rate of one destination per second.
Each second, for each source we determine the next desti-
nation it attempted to send to but so far has not due to our
delay queue. We then forward the source’s packets for that
destination residing in the delay queue and add the desti-
nation to the allowed-destination cache. The effect of this
mechanism is to limit sources to contacting a single new
destination each second. One metric of interest with this al-
gorithm then is the maximum size the delay queue reaches.

A possible negative consequence of the Williamson al-
gorithm is that the cache of previously established destina-
tions introduces false positives rather than false negatives.
Due to its limited size, previously established destinations
may be evicted prematurely. For testing purposes, we se-
lected cache sizes of 8 previously-allowed destinations per
source (3 greater than the cache size used in [28]). We man-
ually examined all internal sources where the delay queue
reached 15 seconds or larger, enough to produce a signifi-
cant disturbance for a user (Table 3).

In practice, we observed that the Williamson algorithm
has a very low false positive rate, with only a few minor
exceptions. First, the DNS servers in the trace greatly over-
flow the delay queue due to their high fanout when resolv-
ing recursive queries, and thus would need to be special-
cased. Likewise, a major SMTP server also triggered a re-
sponse due to its high connection fanout, and would also
require white-listing. However, of potential note is that
three HTTP clients reached a threshold greater than 15,
which would produce a user-noticeable delay but not trig-
ger a permanent alarm, based on Williamson’s threshold of
blocking machines when their delay queue reaches a depth
of 100 [26].

6 Cooperation

Staniford analyzed the efficacy of worm containment in an
enterprise context, finding that such systems exhibit a phase
structure with an epidemic threshold [21]. For sufficiently
low vulnerability densities and/orT thresholds, the system
can almost completely contain a worm. However, if these
parameters are too large, a worm can escape and infect a
sizeable fraction of the vulnerable hosts despite the pres-
ence of the containment system. The epidemic threshold
occurs when on average a worm instance is able to infect
exactly one child before being contained. Less than this,
and the worm will peter out. More, and the worm will
spread exponentially. Thus we desire to set the response
thresholdT as low as possible, but if we set it too low, we
may incur unacceptably many false positives. This tends to
place a limit on the maximum vulnerability density that a
worm containment system can handle.

In this section, we present a preliminary analysis of
performance improvements that come from incorporating
communication between cells. The improvement arises
by using a second form of a-worm-is-spreading detector:
the alerts generated by other containment devices. The
idea is that every containment device knows how many
blocks the other containment devices currently have in ef-
fect. Each devise uses this information to dynamically
adjust its response threshold: as more systems are being



Anonymized IP Delay Queue Size Cause

144.240.84.131 11,395 DNS Server
147.95.15.21 8,772 DNS Server

144.240.84.130 3,416 DNS Server
147.95.3.37 23 SMTP Server

144.240.25.76 19 Bursty DNS Client
147.95.52.12 18 Active HTTP Client

147.95.208.255 17 Active HTTP Client
147.95.208.18 15 Active HTTP Client

Table 3: All outbound connections with a delay queue of size 15 or greater for Williamson’s algorithm

blocked throughout the enterprise, the individual contain-
ment devices become more sensitive. This positive feed-
back allows the system to adaptively respond to a spreading
worm.

The rules for doing so are relatively simple. All cells
communicate, and when one cell blocks an address, it com-
municates this status to the other cells. Consequently, at
any given time each cell can compute thatX other blocks
are in place, and thereby reducesT by (1 − θ)X , whereθ
is a parameter that controls how aggressively to reduce the
threshold as a worm spreads. For our algorithm, the cell
also needs to increaseCmin by a similar amount, to limit
the scanning allowed by a previously normal machine.

In our simulations, very small values ofθ make a signif-
icant difference in performance. This is good, since reduc-
ing the threshold also tends to increase false positive rates.2

However, we can have the threshold return to its normal
(initial) value using an exponentially weighted time delay
to ensure that this effect is short lived.

A related policy question is whether this function should
allow a complete shutdown of the network (no new connec-
tions tolerated), or should have a minimum threshold below
which the containment devices simply will not go, poten-
tially allowing a worm to still operate at a slower spread-
ing rate, depending on its epidemic threshold. The basic
tradeoff is ensuring a degree of continued operation, vs. a
stronger assure that we will limit possible damage from the
worm.

2Large values ofθ risk introducing catastrophic failure modes in which
some initial false positive drives thresholds low enough to create more
false positives, which drive thresholds still lower. This could lead to a
complete blockage of traffic due to a runaway positive feedback loop.
This is unlikely with the small values ofθ in this study, and moreover
could be addressed by introducing a separate threshold for communica-
tion that wasnot adaptively modified. The two thresholds would begin
at the same value, but the blocking threshold would lower as the worm
spread, while the communication threshold — i.e., the degree of scan-
ning required before a devicetells other devices that it has blocked the
corresponding address — would stay fixed. This would sharply limit the
positive feedback of more false positives triggering ever more changes to
the threshold.

6.1 Testing Cooperation

To evaluate the effects of cooperation, we started with the
simulation program used in the previous evaluation of con-
tainment [21]. We modified the simulator so that each re-
sponse would reduce the threshold byθ. We then reran
some of the simulations examined in [21] to assess the ef-
fect on the epidemic threshold for various values ofθ.

The particular set of parameters we experimented with
involved an enterprise network of size217 addresses. We
assumed a worm that had a50% probability of scanning
inside the network, with the rest falling outside the enter-
prise. We also assumed an initial threshold ofT = 10, that
the network was divided into512 cells of 256 addresses
each, and that the worm had no special preference to scan
within its cell. We considered a uniform vulnerability den-
sity. These choices correspond to Figure 2 in [21], and, as
shown there, the epidemic threshold is then at a vulnerabil-
ity density ofv = 0.2 (that is, it occurs when20% of the
addresses are vulnerable to the worm).

We varied the vulnerability density across this epidemic
threshold for different values ofθ, and studied the result-
ing average infection density (the proportion of vulnerable
machines which actually got infected). This is shown in
Figure 3, where each point represents the average of 5,000
simulated worm runs. The top curve shows the behavior
when communication does not modify the threshold (i.e.,
θ = 0), and successively lower curves haveθ = 0.00003,
θ = 0.0001, andθ = 0.0003. It is to be emphasized that
these are tiny values ofθ (less than3/100 of 1%). One
would not expect there to be any significant problem of in-
creased false positives with such small changes; but that
they are larger than zero suffices to introduce significant
positive feedback in the presence of a propagating worm
(i.e., the overall rate of blocked scans within the network
rises over time).

The basic structure of the results is clear. Changingθ
does not significantly change the epidemic threshold, but
we can greatly reduce the infection density that the worm
can achieve above the epidemic threshold. It makes sense
that the epidemic threshold is not changed, since below the
epidemic threshold, the worm cannot gain much traction
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Figure 3: Plot of worm infection density against vulnera-
bility densityv for varying values of the threshold modifi-
cation valueθ. See the text for more details.

and so the algorithm that modifiesT has no chance to en-
gage and alter the situation. However, above the epidemic
threshold, adaptively changingT can greatly reduce the
infection density a worm can achieve. Clearly, inter-cell
communication mechanisms hold great promise at improv-
ing the performance of containment systems.3

We must however discuss a simplification we made in
our simulation. We effectively assumed that communica-
tion amongst cells occurs instantaneously compared to the
worm propagation. Clearly, this an idealization. A careless
design of the communication mechanism could result in
speeds that cause the threshold modification to always sub-
stantially lag behind the propagation of the worm, greatly
limiting its usefulness. (See [15] for a discussion of the
competing dynamics of a response to a worm and the worm
itself).

For example, it can be shown that a design in which we
send a separate packet to each cell that needs notification
allows worm instances to scan (on average) a number of ad-
dresses equal to half the number of cells before any thresh-
old modification occurs (assuming that the worm can scan
at the same speed as the communication mechanism can
send notifications). This isn’t very satisfactory.

One simple approach to achieve very fast inter-cell com-
munication is to use broadcast across the entire network.
However, this is likely to pose practical risks to network
performance in the case where there are significant num-
bers of false positives.

A potentially better approach is for the containment de-

3Particularly in parts of the parameter space where the epidemic
threshold vulnerability density is much lower than20% — e.g., if the
worm has the ability to differentially target its own cell.

vices to cache recently contacted addresses. Then when
a source IP crosses the threshold for scan detection, the
cells it recently communicated with can be contacted first
(in order). These cells will be the ones most in need of
the information. In most cases, this will result in thresh-
old modification occurring before the threshold is reached
on any cells that got infected as a result (rather than the
message arriving too late and the old unmodified threshold
being used).

7 Attacking Worm Containment

Security devices do not exist in a vacuum, but represent
both targets and obstacles for possible attackers. By creat-
ing a false positive, an attacker can trigger responses which
wouldn’t otherwise occur. Since worm containmentmust
restrict network traffic, false positives create an attractive
DOS target. Likewise, false negatives allow a worm or at-
tacker to slip by the defenses.

General containment can incur inadvertent false posi-
tives both from detection artifacts and from “benign” scan-
ning. Additionally, attackers can generate false positives
if they can forge packets, or attempt to evade containment
if they detect it in operation. When we also use cooper-
ation, an attacker who controls machines in several cells
can cause significant network disruption through coopera-
tive collapse: using the network of compromised machines
to trigger an institution-wide response by driving down the
thresholds used by the containment devices through the in-
stitute (if θ is large enough to allow this). Our scan de-
tection algorithm also has an algorithm-specific, two-sided
evasion, though we can counter these evasions with some
policy changes, which we discuss below. Although we en-
deavor in this section to examine the full range of possi-
ble attacks, undoubtedly there are more attacks we haven’t
considered.

7.1 Inadvertent False Positives

There are two classes of inadvertent false positives: false
positives resulting from artifacts of the detection routines,
and false positives arising from “benign” scanning. The
first are potentially the more severe, as these can severely
limit the use of containment devices, while the second is of-
ten amenable to white-listing and other policy-based tech-
niques.

In our primary testing trace, we observed only one in-
stance of an artifact-induced false positive, due to unidirec-
tional AFS control traffic. Thus, this does not appear to be a
significant problem for our algorithm. Our implementation
of Williamson’s mechanism showed artifact-induced false
positives involving 3 HTTP clients that would have only
created a minor disruption. Also, Williamson’s algorithm
is specifically not designed to apply to traffic generated by
servers, requiring these machines to be white-listed.



Alerting on benign scanning is less severe. Indeed, such
scans should trigger all good scan-detection devices. More
generally, “benign” is fundamentally a policy distinction:
is this particular instance of scanning a legitimate activity,
or something to prohibit?

We have observed benign scanning behavior from Win-
dows File Sharing (NetBIOS) and applications such as
Gnutella which work through a list of previously-connected
peers to find access into a peer-to-peer overlay. We note
that if these protocols were modified to use a rendezvous
point or a meta-server then we could eliminate their scan-
ning behavior. The other alternative is to whitelist these ser-
vices. By whitelisting, their scanning behavior won’t trig-
ger a response, but the containment devices can no longer
halt a worm targeting these services.

7.2 Detecting Worm Containment

If a worm is propagating within an enterprise that has a con-
tainment system operating, then the worm could slow to a
sub-threshold scanning rate to avoid being suppressed. But
in the absence of a containment system, the worm should
instead scan quickly. Thus, attackers will want to devise
ways for a worm to detect the presence of a containment
system.

Assuming that the worm instance knows the address of
the host that infected it, and was told by it of a few other
active copies of the worm in the enterprise, then the worm
instance can attempt to establish a normal communication
channel with the other copies. If each instance sets up
these channels, together they can form a large distributed
network, allowing the worm to learn of all other active in-
stances.

Having established the network, the worm instance then
begins sending out probes at a low rate, using its worm
peers as a testing ground: if it can’t establish communica-
tion with already-infected hosts, then it is likely the enter-
prise has a containment system operating. This informa-
tion can be discovered even when the block halts all direct
communication: the infection can send a message into the
worm’s overlay network, informing the destination worm
that it will attempt to probe it. If the ensuing direct probe
is blocked, thereceivingcopy now knows that the sender is
blocked, as it was informed about the experimental attempt.

This information can then be spread via the still-
functional connections among the worm peers in order to
inform future infections in the enterprise. Likewise, if the
containment system’s blocks are only transient, the worm
can learn this fact, and its instances can remain silent, wait-
ing for blocks to lift, before resuming sub-threshold scan-
ning.

Thus we must assume that a sophisticated worm can de-
termine that a network employs containment, and probably
deduce both the algorithm and parameters used in the de-
ployment.

7.3 Malicious False Negatives

Malicious false negatives occur when a worm is able to
scan in spite of active scan-containment. The easiest eva-
sion is for the worm to simply not scan, but propagate
via a different means: topological, meta-server, passive,
and target-list (hit-list) worms all use non-scanning tech-
niques [27]. Containing such worms is outside the scope of
our work. We note, however, that scanning worms repre-
sent the largest class of worms seen to date and, more gen-
erally, a broad class of attack. Thus, eliminating scanning
worms from a network clearly has a great deal of utility
even if it does not address the entire problem space.

In addition, scanning worms that operate below the
sustained-scanning threshold can avoid detection. Doing
so requires more sophisticated scanning strategies, as the
worms must bias their “random” target selection to effec-
tively exploit the internal network in order to take advan-
tage of the low rate of allowed scanning. The best coun-
termeasure for this evasion technique is simply a far more
sensitive threshold. We argue that a threshold of 1 scan
per second (as in Williamson [28]), although effective for
stopping current worms, is too permissive when a worm
is attempting to evade containment. Thus we targeted a
threshold of 1 scan per minute in our work.

Additionally, if scanning of some particular ports has
been white-listed (such as Gnutella, discussed above), a
worm could use that port to scan for liveness—i.e., whether
a particular address has a host running on it, even though
the host rejects the attempted connection—and then use
followup scans to determine if the machine is actually vul-
nerable to the target service. While imperfect—failed con-
nection attempts will still occur—the worm can at least
drive the failure rate lower because the attempts will fail
less often.

Another substantial evasion technique can occur if a cor-
rupted system can obtain multiple network addresses. If
a machine can gaink distinct addresses, then it can issue
k times as many scans before being detected and blocked.
This has the effect of reducing the epidemic threshold by
a factor ofk, a huge enhancement on a worm’s ability to
evade containment.

7.4 Malicious False Positives

If attackers can forge packets, they can frame other hosts
in the same cell as scanners. We can engineer a local area
network to resist such attacks by using the MAC address
and switch features that prevent spoofing and changing of
MAC addresses. This is not an option, though, for pur-
ported scans inbound to the enterprise coming from the ex-
ternal Internet. While the attacker can use this attack to
deny service to external addresses, preventing them from
initiating new connections to the enterprise, at least they
can’t block new connections initiated by internal hosts.

There is an external mechanism which could cause this



internal DOS: a malicious web page or HTML-formatted
email message could direct an internal client to attempt a
slew of requests to nonexistent servers. Since this repre-
sents an attacker gaining a limited degree of control over
the target machine (i.e., making it execute actions on the
attacker’s behalf), we look to block the attack using other
types of techniques, such as imposing HTTP proxies and
mail filtering to detect and block the malicious content.

7.5 Attacking Cooperation

Although cooperation helps defenders, an attacker can still
attempt to outrace containment if the initial threshold is
highly permissive. However, this is unlikely to occur sim-
ply because the amount of communication is very low, so
it is limited by network latency rather than bandwidth. Ad-
ditionally, broadcast packets could allow quick, efficient
communication between all of the devices. Nevertheless,
this suggests that the communication path should be opti-
mized.

The attacker could also attempt to flood the containment
coordination channels before beginning its spread. Thus,
containment-devices should have reserved communication
bandwidth, such as a dedicated LAN or prioritized VLAN
channels, to prevent an attacker from disrupting the inter-
cell communication.

Of greater concern iscooperative collapse. If the rate
of false positives is high enough, the containment devices
respond by lowering their thresholds, which can generate a
cascade of false positives, which further reduces the thresh-
old. Thus, it is possible that a few initial false positives,
combined with a highly-sensitive response function, could
trigger a maximal network-wide response, with major col-
lateral damage.

An attacker that controls enough of the cells could at-
tempt to trigger or amplify this effect by generating scan-
ning in those cells. From the viewpoint of the worm con-
tainment, this appears to reflect a rapidly spreading worm,
forcing a system-wide response. Thus, although cooper-
ation appears highly desirable due to the degree to which
it allows us to begin the system with a high tolerance set-
ting (minimizing false positives), we need to develop mod-
els of containment cooperation that enable us to understand
any potential exposure an enterprise has to the risk of ma-
liciously induced cooperative collapse.

7.6 Attacking Our Algorithm

Our approximation algorithm adds two other risks: attack-
ers exploiting the approximation caches’ hash and permu-
tation functions, and vulnerability to a two-sided evasion
technique. We discussed attacking the hash functions ear-
lier, which we address by using a block-cipher based hash.
In the event of a delayed response due to a false negative,
the attacker will have difficulty determining which possible
entry resulted in a collision.

Another evasion is for the attacker to embed their scan-
ning within a large storm of spoofed packets which cause
thrashing in the address cache and which pollute the con-
nection cache with a large number of half-open connec-
tions. Given the level of resources required to construct
such an attack (hundreds of thousands or millions of forged
packets), however, the attacker could probably spread just
as well simply using a slow, distributed scan. Determin-
ing the tradeoffs between cache size and where it becomes
more profitable to perform distributed scanning is an area
for future work.

A more severe false negative is a two-sided evasion: two
machines, one on each side of the containment device, gen-
erate normal traffic establishing connections on a multitude
of ports. A worm could use this evasion technique to bal-
ance out the worm’s scanning, making up for each failed
scanning attempt by creating another successful connec-
tion between the two cooperating machines. Since our al-
gorithm treats connections to distinct TCP ports as distinct
attempts, two machines can generate enough successes to
mask any amount of TCP scanning.

There is a counter-countermeasure available, however.
Rather than attempting to detect both vertical and horizon-
tal TCP scanning, we can modify the algorithm to detect
only horizontal scans by excluding port information from
the connection-cache tuple. This change prevents the algo-
rithm from detecting vertical scans, but greatly limits the
evasion potential, as now any pair of attacker-controlled
machines can only create a single success.

More generally, however, for an Internet-wide worm in-
fection, the huge number of external infections could allow
the worm to generate a large amount of successful traffic
even when we restrict the detector to only look for hori-
zontal scans. We can counter this technique, though, by
splitting the detector’s per-address count into one count as-
sociated with scanning within the internal network and a
second count to detect scanning on the Internet. By keep-
ing these counts separate, an attacker could use this evasion
technique to allow Internet scanning, but they could not ex-
ploit it to scan the internal network. Since our goal is to
protect enterprise and not the Internet in the large, this is
acceptable.

A final option is to use two containment implementa-
tions, operating simultaneously, one targeting scans across
the Internet and the other only horizontal scans within the
enterprise. This requires twice the resources, although any
hardware can be parallelized, and allows detection of both
general scanning and scanning behavior designed to evade
containment.

8 Related Work

In addition to the TRW algorithm used as a starting point
for our work [9], a number of other algorithms to detect
scanning have appeared in the literature.



Both the Network Security Monitor [8] and Snort [20] at-
tempt to detect scanning by monitoring for systems which
exceed a count of unique destination addresses contacted
during a given interval. Both systems can exhibit false pos-
itives due to active, normal behavior, and may also have
a significant scanning sub-threshold which an attacker can
exploit.

Bro [16] records failed connections on ports of interest
and triggers after a user-configurable number of failures.
Robinsonet al. [18] used a similar method.

Leckie et al [11] use a probabilistic model based on
attempting to learn the probabilistic structure of normal
network behavior. The model assumes that access to ad-
dresses made by scanners follows a uniform distribution
rather than the non-homogeneous distribution learned for
normal traffic, and attempts to classify possible scanning
sources based on the degree to which one distribution or
the other better fits their activity.

Finally, Stanifordet al’s work on SPICE [22] detects
very stealthy scans by correlating anomalous events. Al-
though effective, it requires too much computation to use it
for line-rate detection on high-speed networks.

In addition to Williamson’s [28, 26] and Staniford’s [21,
23] work on worm containment, Jung et al [10] have de-
veloped a similar containment technique based on TRW.
Rather than using an online algorithm which assumes that
all connections fail until proven successful, it uses the
slightly delayed (until response seen or timeout) TRW
combined with a mechanism to limit new connections sim-
ilar to Williamson’s algorithm.

Zou et al. [30] model some requirements for dynamic-
quarantine defenses. They also demonstrate that, with a
fixed threshold of detection and response, there are epi-
demic thresholds. Additionally, Mooreet al. have stud-
ied abstract requirements for containment of worms on the
Internet [13], and Nojiriet al have studied the competing
spread of a worm and a not-specifically-modeled response
to it [15].

There have been two other systems attempting to com-
mercialize scan containment: Mirage networks [14] and
Forescout [7]. Rather than directly detecting scanning,
these systems intercept communication to unallocated
(dark) addresses and respond by blocking the infected sys-
tems.

9 Future Work

We have plans for future work in several areas: implement-
ing the system in hardware and deploying it; integrating
the algorithm into a software-based IDS; attempting to im-
prove the algorithm further by reducing the sub-threshold
scanning available to an attacker; exploring optimal com-
munication strategies; and developing techniques to obtain
a complete enterprise-trace for further testing.

The hardware implementation will target the ML300

demonstration platform by Xilinx [29]. This board con-
tains 4 gigabit Ethernet connections, a small FPGA, and
a single bank of DDR-DRAM. The DRAM bank is suffi-
ciently large to meet our design goals, while the DRAM’s
internal banking should enable the address and connection
tables to be both implemented in the single memory.

We will integrate our software implementation into the
Bro IDS, with the necessary hooks to pass IP blocking in-
formation to routers (which Bro already does for its current,
less effective scan-detection algorithm). Doing so will re-
quire selecting a different 32-bit block cipher, as our cur-
rent cipher is very inefficient in software. For both hard-
ware and software, we aim to operationally deploy these
systems.

Finally, we are investigating ways to capture a full-
enterprise trace: record every packet in an large enterprise
network of many thousands of users. We believe this is
necessary to test worm detection and suppression devices
using realistic traffic, while reflecting the diversity of use
which occurs in real, large intranets. Currently, we are un-
aware of any such traces of contemporary network traffic.

10 Conclusions

We have demonstrated a highly sensitive approximate scan-
detection and suppression algorithm suitable for worm con-
tainment. It offers substantially higher sensitivity over pre-
viously published algorithms for worm containment, while
easily operating within an 8 MB memory footprint and re-
quiring only 2 uncached memory accesses per packet. This
algorithm is suitable for both hardware and software imple-
mentations.

The scan detector used by our system can limit worm in-
fectees to sustained scanning rates of 1 per minute or less.
We can configure it to be highly sensitive, detecting scan-
ning from an idle machine after fewer than 10 attempts in
short succession, and from an otherwise normal machine in
less than 30 attempts.

We developed how to augment the containment system
with using cooperationbetween the containment devices
that monitor different cells. By introducing communica-
tion between these devices, they can dynamically adjust
their thresholds to the level of infection. We showed that
introducing a very modest degree of bias that grows with
the number of infected cells makes a dramatic difference
in the efficacy of containment above the epidemic thresh-
old. Thus, the combination of containment coupled with
cooperation holds great promise for protecting enterprise
networks against worms that spread by address-scanning.
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