
Worms vs. Perimeters:
The Case for Hard-LANs

Nicholas Weaver
ICSI

nweaver@icsi.berkeley.edu

Dan Ellis
The MITRE Corporation

ellisd@mitre.org

Stuart Staniford
Nevis Networks

stuart@nevisnetworks.com

Vern Paxson
ICSI

vern@icir.org

Abstract— Network worms—self-propagating network
programs—represent a substantial threat to our network
infrastructure. Due to the propagation speed of worms, reactive
defenses need to be automatic. It is important to understand
where and how these defenses need to fit in the network so that
they cannot be easily evaded. As there are several mechanisms
malcode authors can use to bypass existing perimeter-centric
defenses, this position paper argues that substantial defenses
will need to be embedded in the local area network, thus
creating “Hard-LANs” designed to detect and respond to
worm infections. When compared with conventional network
intrusion detection systems (NIDSs), we believe that Hard-LAN
devices will need to have two orders of magnitude better
cost/performance, and at least two orders of magnitude better
accuracy, resulting in substantial design challenges.

I. I NTRODUCTION

Network worms—self-propagating network programs—
represent a substantial threat due to four distinct worm proper-
ties: speed (worms spread faster than human reactions), ability
to penetrate networks (worms spread widely), democratic na-
ture (just about anyone can use a toolkit worm), and arbitrary
payload (worms can carry whatever code an attacker desires).
Each of these properties has implications when designing
worm defenses.

It has now been well established by both theoretical mod-
eling [9], [15] and actual worms [7] that, due to their extreme
speed, any reactive portion of the defense which seeks to
detect, analyze, and respond to a worm must be automatic.
But where should these defenses be placed in the network?

Architectural decisions about where to place worm defenses
in a network need to take into consideration how worms
have historically crossed many perimeters. Defenses should
be deployed where worms cannot trivially bypass them, while
being composable so that a failure of one perimeter has
minimal consequences.

In the rest of this paper, we provide a working definition
of a perimeter, and how perimeters form a critical component
of worm defense. We then review and elaborate on several
strategies worms have used to cross coarse-grained perimeters,
such as firewalls [4] and even “air gaps.” We also review the
techniques malcode has used to attack anti-virus and other
fine-grained perimeters. In short, contemporary architectures
(consisting of only very coarse-grained and very fine-grained
perimeters) are inadequate with respect to the worm problem.

The position we develop from the arguments we present
is that substantial portions of any robust worm-defense will
need to be deployedthroughoutthe local area network. This
will require the development of “Hard-LAN” devices: network
components designed to both detect and respond to worm
infections throughout the local area networks of enterprise
networks.

Although we argue that this is a necessary step, creating
Hard-LANs will encompass substantial research challenges,
for not only is it currently difficult to detect many classes
of worms, but Hard-LAN defenses will have to operate at
substantially higher data rates, at substantially lower prices,
when compared with conventional intrusion detection systems.
We estimate that, due to an order of magnitude higher data
rates, combined with an order of magnitude more devices
in an institution, Hard-LAN defenses will need to provide a
cost to performance ratio of two orders of magnitude better
than contemporary network-based intrusion detection systems
(NIDSs) [11], [12], if system cost is to remain comparable
with current defenses. Likewise, the accuracy, measured in
expected false positives per bit of traffic observed, will also
need to be improved by at least two orders of magnitude.

II. PERIMETERS ANDPOSTURES

Architectural decisions about where to place worm defenses
in a network need to account for how worms have histor-
ically defeated perimeters. We first define what we mean
by both aperimeterand aposture. We next briefly discuss
properties of perimeters and postures and provide a set of
guiding principles for perimeter and posture evaluation. The
following section then applies these principles to evaluating
contemporary perimeters and postures.

A. Perimeter and Posture Definitions

A perimeteris a controlled barrier that implements a policy
on communication between elements protected by (“inside”)
the perimeter and elements outside the perimeter. For our
purposes, these elements represent network computers or
hosts. Communication may move along many paths between
elements. These paths of communication can take many
forms, including network traffic, portable media, or even
entire computers. A perimeter can only impose its policy on
communication which crosses through the perimeter along
checked data paths. Thus a severe limitation of all perimeters

Inside
Checked
PathsOutside

Unchecked
Paths

Perimeter
Control Plane

(A)

Control
Data User

System

App

App

Service

Antivirus
IDS

I/O

(C)

Internet
Enterprise
WAN/LAN

Firewall
NIDS

Internet
Traffic

VPN
Traffic

Notebooks
Wireless, etc

Alerts

(B)

Fig. 1. (A) The conceptual view of a network perimeter. (B) Firewalls and NIDS as a coarse-grained network perimeter, monitoring the Internet traffic to a
large institution. (C) End-host anti-virus viewed as a perimeter monitoring all I/O on the host system.

is that they can’t observe communication which either goes
around the perimeter on unchecked data paths or never leaves
the perimeter.

A perimeter also has a control plane, which contains the
logic that defines the perimeter’s operation. This includes
the logic to interpret (sensors) and modify (actuators) the
constraints imposed upon traffic crossing the perimeter. This
logic allows the perimeter to determine which traffic to allow,
which traffic to modify, and which to interdict completely. The
logic within the control plane may also allow the perimeter to
communicate with other devices, as part of a larger defensive
system. Figure 1(A) provides a depiction of a generalized
perimeter.

An enterprise securityposture consists of one or more
perimeters and the properties that apply to perimeters, by
aggregation, apply to enterprise postures. An enterprise posture
is robust if the overall system security is not affected by the
failure of an internal perimeter.

B. Perimeter and Posture Properties

The following properties describe a perimeter and, by aggre-
gation, a posture. Thecoveragemeasures how many elements
(hosts, in our case) are inside the perimeter. Thecoverageof a
perimeter also affects the number of paths across the perimeter,
while completenessis the fraction of the data that is checked
verses unchecked. Thus, coverage refers to a (relatively) static
property and completeness to a dynamic property, since it
depends upon over which paths the data winds up flowing.

Practically speaking, no perimeter or posture is perfect.
The real value of these properties is in helping network
architects evaluate alternative perimeters to be included in an
architecture. In cases where a perimeter is not fully complete,
it may still be adequatelycomplete, satisfying requirements
of the architect for the given operational environment.

A perimeterbreachis when explicitly malicious data flows
across or around a perimeter. We must assume worst case
consequences for a breach: nothing can be asserted about those
elements that were protected by that perimeter alone, although
the perimeter can still monitor subsequent traffic. Even worse
is a breach of the control plane: when this occurs, the attacker
has gained complete control of the perimeter.

C. Principles For Constructing Perimeters and Postures

We offer several principles as useful for evaluating the
effectiveness of perimeters and postures:

• Perimeter control plane failure or perimeter breach re-
sults in the loss of the elements protected by only this
perimeter.

• Perimeter control plane failure means that the perimeter
can no longer provide egress protection (halting outbound
attacks), and cannot provide reliable information as part
of a larger defense.

• As the coverage of the perimeter increases, the likeli-
hood of a perimeter breach never decreases and usually
increases.

• As the coverage of the perimeter increases so does the
cost of a breach.

• Defense in depth(an architectural design wherein a
posture consists of conjoined perimeters that fail inde-
pendently) andcontainment(restricting failures to a small
portion of the network) minimizes the expected loss due
to a breach.

• An accurate perimeter (which filtersonly “bad” data,
so no false positives) is generally more valuable than
a sensitive perimeter (which filtersall “bad” data, but
perhaps also some “good” data, so potential false posi-
tives). Layering accurate perimeters improves the posture,
whereas layering sensitive (but inaccurate) perimeters
usually reduces system reliability as the rate of false
positives increase.

We use these guiding principles to evaluate contemporary
perimeters and postures, and use them to formulate where
worm defenses will need to be embedded in the network.

III. C ONTEMPORARYPERIMETERS ANDPOSTURES

Contemporary network postures generally consist of two
perimeters: coarse-grained perimeters around large groups of
machines and fine-grained perimeters running on end-systems.
The enterprise network perimeter is the most commonly de-
ployed coarse-grained perimeter. It consists of corporate fire-
walls on Internet service provider (ISP) boundaries, network-
based intrusion detection systems (NIDS) deployed at the ISP
boundary (Figure 1(B)), or a complete disconnection (air gap),
isolating the network from the rest of the Internet.

The most common fine-grained perimeter runs on the end
host, such as an end-host anti-virus solution and a personal
firewall (Figure 1(C)). This software runs on the end-host it
is attempting to protect, monitoring all I/O and other system
state. Most enterprises employ a two-layer approach, combin-
ing end-host protections with a coarse network perimeter.

Enterprises may have additional perimeters in their posture,
including physical access control and policies concerning
mobile devices. These may or may not be relevant with respect
to the worm attacks, depending on the vectors the worm
employs and the time scales over which detection and response
must occur.

A. The Enterprise Network Perimeter

The coarse-grained perimeter usually deployed consists of
a firewall [4] at each ISP connection point, network-based
intrusion detection system (NIDS) sensors, and a corporate
email server anti-virus solution, as well as VPN concentra-
tors for external access. Historically, this enterprise network
perimeter has been adequate for many enterprises. Little data
got on the network that did not pass through a checked
path at the firewall and inspected by the NIDS sensors. The
environment was such that the wired network was the primary
path for data flow because of its relative ease and good
bandwidth. The environment has changed, however, so that
there are now numerous unchecked high-bandwidth data paths
(Figure 1(B)). As a result of the changing environment, the
enterprise network perimeter is not adequate for worm defense.

The enterprise network perimeter still has significant ad-
vantages and should not be abandoned. It offers significant
coverage: all internal enterprise hosts receive some protection
from it. It provides a good source of understanding some of
the data that comes into and leaves the enterprise. However,
the proliferation of unchecked data-paths results in inadequate
completeness and accuracy, and worms have successfully
exploited these flaws.

Even internal firewalls will often not stop these paths. Many
institutions are deploying firewalls or network VLAN/ACL
based access controls between large subgroups. Yet as these
boundries are still very coarse, they have most of the same
benefits and limitations as the conventional firewall.

The only checked paths across the enterprise network
perimeter are those paths that enter through the network
gateway at the ISP boundary. Whereas this was previously
an adequately covered perimeter, other unchecked data paths
have proliferated. The following paths include just some of the
mechanisms worms have used to breach the enterprise network
perimeter [13]: portable media (e.g., CDs, portable hard drives,
USB pen drives, floppy disks), mobile computing devices (e.g.,
laptops, personal digital assistants [PDA]), wireless access
points (WAP), virtual private networks (VPN) tunnels and
modem access. We illustrate how some of these unchecked
data paths have been used to breach the enterprise network
perimeter.

Code Red II [3] spread only by attacking IIS web-servers
listening to TCP port 80. Yet it infected some organizations

that blocked inbound port 80 traffic. The vectors that allowed
this were “trusted” organizations with VPN access; perimeters
(if they exist) at VPN tunnel endpoints are usually much less
constraining than the enterprise network perimeter.

Likewise, wireless access points commonly bypass the
perimeter. Worse, these access points may appear sponta-
neously. Some laptops come with a network interface card
(NIC) capable of serving as a access point, with the default
installation enabling this service. For example, we know
of one instance when such a laptop was connected to an
enterprise network, automatically configured itself as an open
access point, and silently bridged two networks. UDP packets
containing the Slammer [7] worm came in via the bridge from
a remote infected host, external to the institution, which had
automatically associated with this spontaneously-generated
open access point. (Note that the laptop itself wasnot infected,
it was simply a “carrier,” in effect.)

It may prove difficult to even detect the appearance of such
spontaneous access points within an enterprise, especially in
geographic regions where access point density is high and the
rogue APs use strong authentication. For example, a recent test
in McLean, Virginia revealed over 300 access points accessi-
ble from a single point, using a small amplifying antenna.
Enforcing an enterprise policy banning the deployment of
access points connecting to the enterprise network is currently
difficult even in areas where there are few access points,
although there are some products in development to monitor
and respond to new access points: detecting their arrival and
then isolating them from the network by reconfiguring the
LAN’s switches. The fact that wireless access points are easy
to deploy and provide excellent functionality makes them
common unchecked data paths into an enterprise network.

Laptops without wireless networking are still an unchecked
data path. Many have observed that laptops have been taken
into other domains (e.g., when a user takes the laptop home),
infected in the remote domain, retained the worm while being
taken back into the enterprise network (e.g., by putting the
laptop in sleep or standby mode), been reanimated and infected
other portions of the enterprise network. Mobile laptops rep-
resent one of the most common paths used by the Blaster [16]
worm, as many enterprises had reconfigured blocks to stop all
Windows RPC traffic at the firewall, yet were still infected by
the worm. This unchecked data path has been used even by
Slammer, which is only memory-resident.

Hybrid pathogens, such as worms that can spread as a virus
as well (e.g., Nimda [2]), have also spread on media such as
floppies, portable hard drives, and USB pen drives.

There are other unchecked data paths as well along which
worms may be able to spread. The enumeration above, how-
ever, should demonstrate that the enterprise network perimeter
is not adequately covered. Even when the network has an air-
gap, these data paths are still relevant.

Not only are there many unchecked data paths, but these
alternative data paths have significant capacity. The amount
of data leaving or entering enterprise networks via these
unchecked data paths is nearly impossible to estimate. Yet

current trends and observations of these alternative data paths
being used by worms to spread support the conclusion that
there is significant data flow through many of these and
possibly other data paths.

Finally, the accuracy of the enterprise network perimeter is
questionable at best, due to at least two factors. The first factor
is that although a perimeter does check a particular data path,
its policy may be out of date. The second mechanism is the
lack of expressiveness in policy or signature languages.

The rapid spread exhibited by malcode (especially worms)
outpaces signature distribution mechanisms. The signatures for
both NIDS and email server anti-virus products need to be
developed, made available, downloaded, and installed before
they take effect. As the development happens after the malcode
has already been released and can often take hours, it is
possible for the malcode infection to peak before the signature
is developed [15]. Nimda [2] is one example of malcode
that spread widely before a signature was released for either
its client-server attacks or its email footprint. No signature
development and deployment mechanism that operates on a
human time scale can compete with fast spreading worms.

Finally, it is clear that the techniques worms have employed
to cross through and around perimeters could be enhanced by
attackers. Rather than relying on blind luck, a worm copy
running on a system equipped with a wireless NIC could scan
the environment searching for open access points. A worm
running on a laptop could be engineered to go dormant, only
reawakening when plugged into a new network. Thus, we must
assume that the coarse-grained perimeter will be penetrated by
well-engineered worms. Since these perimeters encompass so
many hosts, such failures are usually catastrophic.

B. The Host-Based Perimeter

Perimeters deployed on an end-host usually have the right
level of visibility and access to be adequately covered, com-
plete, and accurate. All data crossing a host must cross through
the operating system, enabling the end-host perimeter to ob-
serve the I/O. As the logic for determining the appropriateness
or maliciousness of any action is available to the end-host at
either the operating system or application layer, the end-host
can be as accurate as the logic permits.

However, host-based perimeters have two major limitations.
First, for large enterprises they are exceedingly difficult to
manage, due to sheer scale and the inevitable diversity in
terms of end system configurations it brings. Second, such
perimeters arebrittle: if a worm manages to penetrate the
perimeter, the defense mechanism loses its visibility into the
worm’s progression and its ability to contain the infection. This
is because it is generally infeasible to maintain the integrity
of the control plane after a breach.

Management is currently difficult but many have adapted,
such as enterprises where end-host firewalls and antivirus
mechanisms are mandated and deployed on all systems to
provide an additional layer of protection. But this layer can
only prevent an infection, not contain one. On current systems,
once an attacker can escalate to system-level privileges, any

egress protection is lost as the defensive perimeter and the
control plane’s own protections are the same.

It is already common for viruses to disable anti-virus
software, while the egress protection of personal firewalls
can be corrupted by Trojans overwriting the memory space
of authorized programs. Escalating from limited access to
super user access is often quite easy, as the vulnerabilities
leveraged are usually not characterized as ”‘critical”’ and often
go unpatched. In other cases, including the Code Red II [3]
and Blaster [16] worms, the exploit gains full system-level
access directly, as the targeted service is already running with
full system privileges.

TCPA [17] or related concepts such as virtual machines [18]
might prevent a breach of the perimeter from breaching the
end-host control plane, but actually constructing such systems
remains a significant, open problem. This is especially difficult
when grafting TCPA onto existing, legacy operating systems.
Thus, at least for the near future, we must assume that the
successful compromise of an end-host will compromise all
defenses placed on the host, and the resulting brittleness makes
host-based perimeters an inadequate defense for worms.

Finally, placing additional security layers may even increase
the risk if an attacker can target the security software. The
Witty worm [8], [19] infected ISS’s end-host firewall software,
overwriting the hard-drives of the systems which the firewall
software was attempting to protect.

C. The Two-Layer Enterprise Posture

As no perimeter is perfect, layering perimiters provides
increased coverage, completeness, and robustness. Although
layering the above two perimeters provides increased pro-
tection over either one in isolation, the two-layer enterprise
posture is not adequately robust. Given the porousness of the
enterprise network perimeter, the composition only slightly
improves on the brittleness of host-based perimeters, and does
nothing to address manageability difficulties. Thus we believe
that the two-layer enterprise posture is not adequately robust
when attempting to defend networks against the impact of
worms.

IV. WORM DEFENSECOMPONENTS

A comprehensive worm defense encompasses prevention,
detection, analysis, response, tolerance, and recovery. Pre-
vention represents the ability to resist an initial infection.
Detection is the ability to discover that a new worm is
operating within the network. Analysis seeks to monitor the
progress of a worm and to find particular features of interest.
Response devices change the network to resist an infection.
Tolerance is the ability to withstand a given level of infection
without disrupting normal operation, often by containing the
infection to a small portion of the network. Recovery attempts
to restore normal operation after an infection.

Perimeters play key roles in prevention, detection, response,
and tolerance, and gather critical information required by
analysis systems. Prevention is simply the obvious: if the
initial configuration would stop the worm, the perimeter works.

Otherwise, it fails. Detection requires monitoring the traffic
crossing the perimeter for signs of a worm, which is then fed
into analysis systems. Response uses the results of analysis
to change the perimeter’s state intended to prevent further
infections. Tolerance comes from a perimeter’s ability to
contain an internal infection. By placing enough containment-
based perimeters through a network, it should hopefully be
possible to limit a worm’s damage.

Thus, we wish to deploy perimeters in locations where
we can check as many data paths as possible, minimize
the coverage of any particular perimeter, yet ensure that all
assets are adequately covered. Also of concern is maintaining
control-plane integrity, as any perimeter which cannot main-
tain its control system is largely limited to prevention and
preventative-response roles, as once the worm breaches the
perimeter’s control plain, the perimeter fails completely.

Beyond their vulnerability to initial penetration, coarse-
grained perimeters lack visibility into a worm’s internal spread.
Although an initial worm-detection may require only a single
event, robust defenses will require continual monitoring to
determine whether the current defensive posture is effective
at halting the worm. Since the coarse-grained perimeter lacks
this visibility, this becomes a significant limitation if these
perimeters are to play a substantial role in worm defense, by
feeding detection information into analysis systems.

Many worm defenses, such as worm containment [10],
[14], [21], attempt to limit the damage an already infected
host can inflict, tolerating a small amount of infection in
exchange for halting the worm’s overall progress. In particular,
detection comes from observing patterns of network activity
that manifest much more strongly (or only) in the presence
of a local infection [10]. However, any defense which relies
on detecting, tolerating, and responding dynamically must
maintain control plane integrity even after the perimeter itself
is breached.

Likewise, topological worms [20] such as the Morris worm
[5], as well as contagion worms [15], are highly likely to
penetrate firewalls. Both of these classes of worm use informa-
tion about previous communication as a technique for finding
new targets. Since they attack using information about either
current or previously established relationships, most firewalls
will allow a new topological or contagion worm to pass.

V. THE NEED FORHARD-LAN S

As a consequence of the failings of both coarse-grained
perimeters and end-host protective mechanisms, we believe
that more perimeters need to be layered throughout the enter-
prise network. Such layers need to be very tight, containing
as few hosts as possible with the control plane in the network
and not accessible to the user or operating system it protects.

By using separate devices in the LAN, we can maintain
control plane integrity after infection. Thus LAN-based de-
fenses can act to detect and contain an infection to a small
section of the network, rather than just attempting to prevent
an infection. Yet because the tightest perimeter only protects
a few end-hosts near the edge of the LAN, these perimeters

are both harder to penetrate and the results of a penetration
are less catastrophic, aiding both prevention and tolerance.

Likewise, LAN devices have the best network visibility
when monitoring end-hosts, contributing greatly to both de-
tection and response. Since LAN-based devices can see most
or all network traffic from both compromised and uncompro-
mised hosts, they can hopefully detect a worm earlier on in
its lifecycle, limiting the damage. And by blocking the traffic
at the source, LAN-based devices can prevent a worm from
contacting or compromising more systems.

Thus, if we wish to build networks which are robust to
malice, we believe that the LANs will need to be hardened,
either though the use of network cards outside of the host
computer’s control [1], devices located on the network links,
or logic embedded in the switches themselves. In all cases,
this pushes the defense to the edge of the LAN, close to the
end-hosts, while still residing in the network. Only in this
location can we hope to robustly resist a worm’s attacks on
both coarse-grained perimeters and end-host control planes,
while preventing a compromise of our defenses from also
immediately compromising the end hosts being protected.

This has significant implications which will affect both the
design and implementation of worm defenses. Data rates in
the LAN are substantially higher than those experienced by
coarse-grained perimeters, yet the defenses themselves will
need to be substantially cheaper, if we wish to retain the
current NIDS model as a starting point.

The data-rates are just an unfortunate reality of the evolution
of networking. While a 45 Mbps T3 connection Internet
connection costs over $2,000/month, LAN bandwidth is vastly
cheaper, with 24 port Gbps Ethernet switches selling for less
than $1,500 and with 10 Gbps devices beginning to reach the
market. Thus, most modern installation will use Gbps links
for the aggregate system uplinks and many new installations
bring Gbps all the way to the desktop.

While Gbps NIDS represents the current extreme of NIDS
products, Hard LANs will regularly have to operate at Gbps
rates. Protecting just a single, bidirectional Gbps link requires
a device capable of processing 2 Gbps of data. A PC-
based system would need to move 4 Gbps of data through
the network cards if it was a pass-through, full-bandwidth
device on a Gbps LAN. And if the defenses are integrated
into the switch itself, aggregate bandwidth requirements can
easily exceed 40 Gbps. This situation grows even worse when
10 Gbps links grow common.

Not only are data rates substantially higher, the cost of
each perimeter will need to be substantially lower if we wish
system cost to remain comparable to the current Firewall/NIDS
approach. Rather than protecting an entire institution, each
edge device in a hardened LAN only encompasses a few
systems. Thus it will require many more devices to provide
adequate coverage.

Combined together in bits per second per dollar,
cost/performance for Hard-LAN edge devices will need to be
two orders of magnitude better than current, coarse-grained
perimeters if the final system cost is to be comparable. This

will require both new techniques and implementations, which
will need to be co-developed to provide effective defenses.
Thus, these perimeters will need router and switch-like spe-
cialized designs, able to support high data rates at low cost,
rather than using conventional PCs and related general purpose
devices.

Hard-LAN devices also need to be substantially more ac-
curate when compared with NIDSs. If the system-wide false
positive rate is to be constant, this implies that the false pos-
itive rate for the devices, measured in false positives per unit
of traffic, will also need to be two orders of magnitude better.
(Note that since internal deployment of the same analyzers
does not reflect usingindependenttypes of detectors, achieving
this lower rate is not necessarily two orders of magnitude more
difficult, as discussed below.) Additionally, because Hard-LAN
devices will be composed with conventional perimeters, and
may be composed with other Hard-LAN defenses, accuracy is
critical and may require substantial further improvements.

Fortunately, because the traffic being monitored is on a
LAN, there should be significantly less noise and accordingly
fewer false positives when compared with an access link.
Additionally, since the Hard-LAN approach is more tolerant
of infections, this allows effective egress-attack monitoring,
which is often a far more accurate signal with substantially
fewer false positives. It is unclear whether the choice of
observation points is sufficient for reducing the false positives
to manageable levels, or whether different techniques will need
to be developed.

VI. TOWARDS HARD-LAN D ESIGNS

Although a substantial barrier, the stringent performance
requirements for Hard-LANs are not insurmountable when
designing anti-worm mechanisms. It should be possible for
defenses to be either directly implemented or suitably modified
for use in a Hard-LAN environment.

As an example of how targeting Hard-LAN environment
affects algorithm and implementation design, we review the
considerations we incorporated in designing a scan-detection
algorithm specifically for scanning-worm containment (eval-
uated in greater depth in [10]). Scanning-worm containment
operates by detecting a worm’s scanning and then blocking
the scanner, preventing a scanning worm from spreading
throughout an institution.

Four our containment algorithm, we began with the Thresh-
old Random Walk [6] scan-detection algorithm. The initial
algorithm detects scans by observing the difference between
the number of successful TCP connections and the number
of failed connections. Three limitations prevented us from
directly using this algorithm in a Hard-LAN environment: in
its pure form, the algorithm is offline; it requires unbounded
state; and it requires potentially unbounded memory access
time.

The offline nature arises from the fact that the algorithm
must distinguish between successful and failed connection
attempts, yet to do so requires waiting for either some sort
of server reply (a SYN ACK, accepting the connection, or

a RST, refusing it) or atimeout indicating that no server
host is present. This presents an immediate limitation, since
the algorithm cannot, upon seeing an initial SYN, determine
at that point how to behave. We avoid this limitation by
changing the semantics of the difference between failures and
successes. Rather than counting either a failure or success
after the connection times out or completes, instead all new
connections are immediately counted as failures, and only
recast as successes when we observe a response. This adds a
potential transient false positive which, fortunately, our trace-
based assessment finds not to be significant.

Of greater concern for us is the memory required to track
all pending and active connections. Since we wish to account
for UDP traffic as well as TCP, then given the assumption
that although UDP is connectionless, it is usually based on
bidirectional behavior, we need to keep track of all active
connections. If we desired perfect fidelity, this potentially
requires unbounded access time and unbounded memory.

Thus, we approximate connection tracking using a fixed
table with aliasing: an approximate cache which, rather than
evicting collisions into a backing-store, simply combines en-
tries. To look up a possible connection, we hash the connec-
tion’s identifier to find the table entry, which contains both
an age and status bits for whether the connection has been
established in each direction.

Given the nature of the hash table, multiple connections
may alias to the same value. However, it can be shown that
this aliasing generally only creates false negatives, except for
a very rare race condition. Accessing the table requires only
a single read, and updating only requires writing to the same
location, allowing approximate connection-tracking with only
2 accesses per packet, to only a single memory location. We
have observed that a 1 MB table reaches only 10% capacity
when monitoring the access link of a fairly large (several
thousand hosts) site, allowing us to detect the 90% of the
individual scanning attempts which do not alias to other entries
in the table.

Likewise, we also developed a technique to track all external
addresses of interest, using an associative cache. For this
cache, we permute the address (using a 32 bit block cipher)
and split the result to create both the index and the tag within
the cache, resulting in substantial memory savings (we no
longer need to record the IP address) and making the cache
attacker-unpredictable. Again, this cache only needs a single
read to perform a lookup, and a single write for an update.

An additional concern is how to manage evictions. We
decided upon a policy of evicting the most-normal entry. Thus,
addresses of particular interest won’t be evicted. We observed
that a 4 MB table is sufficient to track all external IP addresses
of note, with only a few evictions, for the same site.

Using these tables, we were able to develop an efficient
scan detection algorithm for both the inbound and outbound
access links. We anticipate that this algorithm will be suitable
for LANs as well. When a connection is established in only
one direction, the corresponding address has a miss recorded
against it. Establishment in the other direction changes it to

a hit. When the difference between the misses and the hits is
greater than 10, the address is blocked because of its scanning
behavior. We use the value 10 because it gives us an additional
margin for error when compared with the value 5 in the
origional TRW algorithm [6], which is based on perfect fidelity
of the connection oracle instead of the “guilty until proven
innocent” heuristic we developed.

The logic is sufficiently simple for a hardware implementa-
tion, as only 2 memory locations are updated per packet, and
only requires a small (< 5 MB) total amount of memory. Thus,
we believe our particular algorithm is feasible for integration
within a switch’s ASIC, or as a low-cost stand-alone network
device. This is simply one example of how targeting the
LAN’s data rates and performance requirements affect the
design of security algorithms. We expect that future algorithms
will need different modifications when targeting this particular
environment.

VII. C ONCLUSIONS

Just as the nature of worms requires that resilient defenses
are automatic, the nature of worms also constrains the location
of these defenses. Since worms can easily cross coarse-
grained perimeters like firewalls, the enterprise perimeter is
an inadequate worm defense. Similarly, since we wish our
defenses to continue to report after a machine is infected, end-
host protection is problematic.

Thus we conclude that a large portion of the worm defenses
will need to be embedded in the LAN, creating Hard-LANs
designed to detect and respond to worms. The creating of
Hard-LANs will require solving several technical challenges,
in order to detect worms at very high data rates using low
cost devices. Compared with conventional NIDS, Hard-LAN
building blocks will require one to two orders of magnitude
better cost/performance, and a similar improvement in the rate
of false positives.

VIII. A CKNOWLEDGMENTS

Funding has been provided in part by NSF under grant
ITR/ANI-0205519 and by NSF/DHS under grant NRT-
0335290. Dan Ellis was supported by the Active Worm
Detection and Response MITRE-Sponsored Research project.
Thanks to Michael Ellis and the reviewers for comments and
suggestions.

REFERENCES

[1] 3com. A new generation of embedded firewalls, http://www.3com.com/
en us/jumppage/embeddedfirewall.html.

[2] CERT. CERT Advisory CA-2001-26 Nimda Worm, http://www.cert.org/
advisories/ca-2001-26.html.

[3] CERT. Code Red II: Another Worm Exploting Buffer Overflow in
IIS Indexing Service DLL, http://www.cert.org/incidentnotes/in-2001-
09.html.

[4] W. Cheswick and S. Bellovin.Firewalls and Internet Security. Addison-
Wesley, 1994.

[5] M. Eichin and J. Rochlis. With Microscope and Tweezers: An Analysis
of the Internet Virus of November 1988. InIEEE Computer Society
Symposium on Security and Privacy, 1989.

[6] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast Portscan
Detection Using Sequential Hypothesis Testing. In2004 IEEE Sympo-
sium on Security and Privacy, to appear, 2004.

[7] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. Inside the Slammer Worm.IEEE Magazine of Security
and Privacy, pages 33–39, July/August 2003 2003.

[8] D. Moore and C. Shannon. The Spread of the Witty Worm, http://www.
caida.org/analysis/security/witty/.

[9] D. Moore, C. Shannon, G. M. Voelker, and S. Savage. Internet
Quarantine: Requirements for Containing Self-Propagating Code. In
INFOCOM, 2003.

[10] Nicholas Weaver and Stuart Staniford and Vern Paxson. Very fast
containment of scanning worms. InScheduled to Appear, 13th USENIX
Security Symposium. USENIX, August 2004.

[11] V. Paxson. Bro: a system for detecting network intruders in real-time.
Computer Networks, 31(23–24):2435–2463, 1999.

[12] Snort.org. Snort, the Open Source Network Intrusion Detection System,
http://www.snort.org/.

[13] S. Staniford. Networm.org faq, http://www.networm.org/faq/.
[14] S. Staniford. Containment of Scanning Worms in Enterprise Networks.

Journal of Computer Security, to appear, 2004.
[15] Stuart Staniford and Vern Paxson and Nicholas Weaver. How to 0wn

the Internet in Your Spare Time. InProceedings of the 11th USENIX
Security Symposium. USENIX, August 2002.

[16] Symantec. W32.blaster.worm, http://securityresponse.symantec.com/
avcenter/venc/data/w32.blaster.worm.html.

[17] Trusted Computing Platform Alliance, http://www.trustedcomputing.org/
home.

[18] VMware, Inc. VMware, http://www.vmware.com/.
[19] N. Weaver and D. Ellis. Reflections on witty: Analyzing the attacker.

;login:, pages 34–37, June 2004.
[20] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A Taxonomy

of Computer Worms. InThe First ACM Workshop on Rapid Malcode
(WORM), 2003.

[21] M. M. Williamson. Throttling Viruses: Restricting Propagation to Defeat
Mobile Malicious Code. InACSAC, 2002.

