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ABSTRACT
A major challenge when attempting to analyze and model large-scale Inter-
net phenomena such as the dynamics of global worm propagation is finding
appropriate abstractions that allow us to tractably grapple with size of the
artifact while still capturing its most salient properties. We present initial re-
sults from investigating “scaledown” techniques for approximating global
Internet worm dynamics by shrinking the effective size of the network under
study. We explore scaledown in the context of both simulation and analysis,
using as a calibration touchstone an attempt to reproduce the empirically ob-
served behavior of the Slammer worm, which exhibited a peculiar decline
in average per-worm scanning rate not seen in other worms (except for the
later Witty worm, which exhibited similar propagation dynamics). We de-
velop a series of abstract models approximating Slammer’s Internet propa-
gation and demonstrate that such modeling appears to require incorporating
both heterogeneous clustering of infectibles and heterogeneous access-link
bandwidths connecting those clusters to the Internet core. We demonstrate
the viability of scaledown but also explore two important artifacts it in-
troduces: heightened variability of results, and biasing the worm towards
earlier propagation.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software

General Terms
Security
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1. INTRODUCTION
A major challenge when attempting to analyze and model large-

scale Internet phenomena such as the dynamics of global worm
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propagation is finding appropriate abstractions that allow us to
tractably grapple with size of the artifact while still capturing its
most salient properties. The general problem of faithful Internet-
scale simulation, modeling, and analysis is well-recognized as ex-
ceedingly challenging [3]; but we still might hope to find cer-
tain problem domains which prove amenable to “scaledown” tech-
niques by which we can reduce the effective size of the Internet as
a means of making analysis tractable.

In this paper we explore scaledown techqniques for approximat-
ing the global worm dynamics exhibited by a particular class of
worms, “bandwidth-limited scanners” [12]. We do so primarily in
the context of the Slammer worm [6], which was the fastest Internet
worm observed to date, spreading worldwide in less than 10 min-
utes. As we will discuss, Slammer exhibited a peculiar propagation
dynamic: a steep reduction in the scanning-rate-per-worm, quite
unlike the constant scanning rate exhibited by previous random-
scanning worms such as Code Red[13, 8, 10]. This phenomenon
appears directly related to network saturation, as additional copies
of Slammer sharing the same access link are unable to contribute
to the worm’s aggregate scanning rate. We use this distinguishing
feature as a touchstone to gauge the accuracy of the different ab-
stract models we develop, and to then assess how differing degrees
of scaledown affect that accuracy.

Unlike other forms of worms, the spread of bandwidth-limited
scanning worms is limited by the available network bandwidth:
each instance of the worm pumps out contagion as fast as it can,
which often means that the worm’s traffic can completely con-
sume the available capacity along its path to the Internet core.
To date, in addition to Slammer there has been only one other
bandwidth-limited scanning worm of note, Witty [7, 11], which in-
fected 12,000 systems in a span of 45 minutes. Below we use some
measurements of Witty as way to partially double-check our Slam-
mer analysis, although a complete analysis of Witty remains future
work.

In Section 2, we detail the technology of scanning worms such
as Code Red, as well as a discussion of bandwidth-limited scanning
worms. This encompasses several subtypes of worms, of which
Slammer and Witty represent the fastest and simplest subtype.
We follow this with a discussion of Slammer’s Internet spread in
Section 3. By using empirical data for Slammer’s scanning rate,
combined with a mathematical model of the fraction of systems
infected, we are able to calculate the average scanning-rate-per-
worm. Although the scanning rate itself increases drastically over
the course of the epidemic, the average scanning rate drops precip-
itously, apparently due to multiple copies sharing network links.

Section 4 then discusses the general problem of scaledown. For
a complex worm model, we are unable to efficiently simulate the
entire Internet address space. The solution is to reduce the address



space and vulnerable population by the same factor, but the process
of scaledown adds two significant artifacts, a shifting zero point and
additional noise, when compared to a full address space simulation
of a conventional (Code-Red-like) scanning worm. Some of these
artifacts are apparent in the mathematical model, while others only
occur in simulation.

In Section 5 we introduce our first model of Slammer, the homo-
geneous cluster model. This model treats all worms as existing in
identically sized clusters, which is simple enough to simulate with
a modified version of a previous simulator. We discuss this simu-
lator in Section 6. We show that the homogeneous cluster model
captures the most significant feature of a decreased scanning-rate-
per-worm, but deviates substantially from the measured reality. We
also demonstrate how the same scaledown artifacts seen when scal-
ing a Code-Red-like simulation also appear in this more complex
model, as well as an additional scaledown artifact.

Section 7 introduces our second model for Slammer, the hetero-
geneous cluster model. This model uses known network informa-
tion to cluster the worm instances, although all clusters have identi-
cal access links. Section 8 describes how we simulated the models,
including execution on the DETER testbed [2]. Using a1/64 scale-
down factor enabled us to achieve realtime emulation. This model
provides better fidelity when compared to the homogeneous model,
although scaledown-related artifacts become visible.

Finally, we summarize our future work in Section 9, and offer
conclusions on scaledown, our model’s fidelity and the effects of
scaledown in Section 10.

2. SCANNING WORMS
Scanning worms [10, 4] operate by picking “random” addresses

and attempting to infect them, for some variation of random (in-
cluding biases for local addresses, randomly selected linear scan-
ning, and randomly selected subblocks). The classic random scan-
ning worm, Code Red [8], was relatively simple. Each worm had
100 threads, with each thread picking a random address to attempt
to contact with aconnect() system call. Since the connect of-
ten had a long timeout, the average scanning rate was roughly 6
scans per second per worm, regardless of the access link capacity,
as Code Red used relatively little network bandwidth.

The spread of a conventional random scanning worm, such as
Code Red, can be modeled as a random-constant-spread [10],
where all copies have the same average scanning rate. This model
can be generally expressed as the logistic function:

A =
eK(T−t0)

1 + eK(T−t0)

which represents both the fraction of the vulnerable population in-
fected and the identical fraction of the aggregate scanning rate as
a function of time. The spread rate parameterK is equal to the
vulnerability density times the scanning rate, whilet0 is an offset
which insures that atT = 0, only a single machine is infected.

Thus, since the spreading rate depends onK, the faster a worm
can scan the more effective it can spread. For worms like Code Red,
the scanning rate is generally limited by either network latency (the
time it takes for theconnect() call to receive a positive or nega-
tive response) or timeout (for when theconnect() call receives
no acknowledgment).

Bandwidth-limited scanning worms such as Slammer1 are not
limited by the latency of the infection attempts. Instead, they are
1Although Slammer’s pseudo-random number generator was sig-
nificantly flawed [6], the aggregate scanning can still be considered
as truely random because of how the generator is seeded.
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Figure 1: Slammer’s Internet scanning rate, as measured at the
University of Wisconsin Tarpit Network
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Figure 2: Slammer’s scanning-rate-per-worm, as derived from
the scans seen by the University of Wisconsin Tarpit Network

limited by how fast the outbound link can be used to send traffic.
Thus if several copies share the same access link, the first copy can
often achieve the maximum scanning rate, with subsequent copies
reducing the average scanning rate for the worm’s group. Thus
the basic assumption behind the random-constant-spread model
doesn’t hold: the average scanning rate per wormchangesas the
infection progresses.

3. SLAMMER’S INTERNET SPREAD
Slammer spread very quickly, infecting almost all of the vulner-

able population within 10 minutes of release [6]. Yet beyond just
spreading fast, Slammer was the first significant worm without a
constant scanning rate.

Figure 1 shows Slammer’s Internet scanning rate, as measured
at the University of Wisconsin “tarpit” network. Using the instan-
taneous scanning rate we can estimate the total number of scans
seen by that point in time. We can then also estimate2 the fraction
of the 75,000 victims infects at that point based on the probability
2A question remains here whether some systems scan only briefly
before becoming disconnected from the network (for example, be-
cause their scanning traffic crashes a switch or routers near their
access point). While our available data for Slammer does not allow
us to assess this possibility directly, indirect evidence suggests it



Witty's Scanning Rate Per Worm

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1.5 3.5 5.5 7.5 9.5 11.5 13.5

Minutes After Release

Pa
ck

et
s/

Se
co

nd
/W

or
m

Figure 3: The Internet spread of witty: Witty’s scanning-rate-
per-worm, as measured by the CAIDA telescope for the time
between 1.5 minutes and 15.5 minutes of Witty’s propagation.

of a system being infected afterk scans,P = 1 − (1 − 1/232)k.
Dividing this number into the scanning rate allows us to calculate
scanning-rate-per-worm (Figure 2), which drops rapidly from an
initial peak of over 19,000 scans-per-second-per-worm to slightly
over 800 scans/s/worm over the course of the infection.

This represents a behavioral signature not seen in previous
worms. However, it makes sense: an initial Slammer infection at
a site would often saturate the outbound link, meaning that sub-
sequent infections would not increase the aggregate scanning rate.
Thus, although the total scanning rate continues to increase, the av-
erage scanning rate per worm drops precipitously during the course
of the infection.

This behavioral signature can also be seen in the Witty worm,
which is the only other single-packet UDP worm seen to date. Ex-
amining the incoming scans as observed at the CAIDA telescope,
we can determine both the instantaneous scanning rate and the
number of infections which are active at that point in time. We as-
sume that an infection is active at a given point if a packet has been
seen from that source both before and after that point in time.

The resulting scanning-rate-per-worm is shown in Figure 3. This
does not display as clean a signature as that seen by Slammer, but
this is a limitation of our dataset, as we don’t have the first 90 sec-
onds of Witty’s propagation. Also, since Witty infected intrusion
detection systems, we might expect (but cannot yet confirm) that
fewer copies would share access links. Additionally, we deliber-
ately undercount the number of active infections near the end of
the trace, because our trace is only for 15 minutes. But even for this
limited window, we can clearly see the reduction in scanning-rate-
per-worm.

Thus, the general behavioral signature—a radically falling
scanning-rate-per-worm—appears to be a generic signature of
bandwidth-limited scanning worms rather than an artifact of Slam-
mer in particular. As noted earlier, given this signature, we can then
use the degree to which a proposed model matches the signature as
a test of the model’s fidelity.

is a minor effect, and our data for Wittydoesallow us to assess it
directly, and confirms that for Witty it was minor.

The Mathematical Model for a Code-Red Like 
Worm with and without Scaledown
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Figure 4: The effect of scaling down the mathematical model
for Code Red. With a 1/28 scaledown factor, the curve shifts
substantially to the left because theproportion of the infected
population at time t0 is larger

4. SCALEDOWN
A basic scaledown technique is to take a large, full address space

model and shrink it. Although doing so might not be necessary for
simple models (i.e., we can simulate or analyze them directly at full
scale), it becomes essential as models grow more complex. Yet by
scaling down a simple and well understood model, we can deter-
mine what phenomena are introduced by scaledown.

For a worm experiment, we proceed by dividing the number of
possible victims by a scaledown factorS. We similarly reduce the
address space by the same factor, while keeping the scanning rate
and other properties constant. For the mathematical model of a ran-
dom scanning worm such as Code Red (Section 2), the valuek will
remain constant as it is dependent on thedensityof victims (not
their number), which does not change due to scaledown.

But the overall results do change somewhat. We need to change
t0, the time offset, as a single infected machine (the starting point)
represents a larger fraction of the population infected, shifting the
curve to the left. Figure 4 shows this effect for a Code-Red-like
worm. This is the first major scaledown artifact we observe.

Another scaledown effect concerns stochastic fluctuations
(which we might term “luck”), which can play a significant factor
in a worm’s spread. As a simple example, consider the initial in-
fection. If the initial infection discovers a new victim significantly
earlier than expected, this can have a huge impact on the overall
spread of the worm.

Figure 5 shows this in practice. We performed 10 simulation runs
using the simulator initially developed for [10], with the same pa-
rameters and only different initial random seeds. The graph shows
the mathematical model also displayed as a thicker line. Even for
300,000 possible victims in a 32 bit address space, luck plays a
significant role in the time it takes a worm to spread.

These stochastic effects are further amplified when a simulation
is scaled down to a smaller address space. When there are many
infected systems, the probabilities average to a far greater degree
than when there are a few systems. Thus when an experiment is
scaled down, these effects become more significant, adding sub-
stantial noise to the propagation curves (Figure 6). Eventually, dis-
crete effects dominate completely (Figure 7), as the smooth curves
becomes very distorted over the entire range.

This can also be seen in Figure 8. This histogram shows the



10 executions of a Code Red like simulation
Compared with Mathematical Prediction
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Figure 5: 10 simulation runs of a Code-Red-like worm, com-
pared with the mathematical prediction (thicker, dashed line).

10 executions of a 1/256 scaled Code Red simulation
Compared with Mathematical Prediction
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Figure 6: 10 simulation runs of a Code-Red-like worm with
1/28 scaledown, compared with the mathematical prediction
(thicker, dashed line).

10 executions of a 1/2^12 scaled simulation
Compared with Mathematical Prediction
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Figure 7: 10 simulation runs of a Code-Red-like worm with
1/212 scaledown, compared with the mathematical prediction
(thicker, dashed line).

Histogram of the time required to infect 50% of the 
vulnerable population for various scaledown levels
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Figure 8: A histogram of 1,000 simulation runs for Code Red
without scaledown, with a1/24, a 1/28, and a1/212 scaledown
factor. The histogram shows the time when 50% of the vulner-
able systems are infected.

Normalized Histogram of the time required to 
infect 50% of the vulnerable population
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Figure 9: A histogram of 1,000 simulation runs for Code Red
without scaledown, with a1/24, a 1/28, and a1/212 scaledown
factor. Unlike the previous histogram, here we have shifted the
different histograms so thatt0 is equivalent.

results for 1,000 simulation runs for each of four scaledown fac-
tors (no scaledown,1/24 scaledown,1/28 scaledown, and1/212

scaledown). The histogram reports the time when 50% infection is
achieved. As the scaledown factor is increased, the center of the his-
togram shifts to the left. This is the same phenomenon seen math-
ematically in Figure 4: the increasing scaledown shifts the curve to
the left by changingt0.

Additionally, as stochastic factors become more significant, the
histogram for the higher levels of scaledown spreads out over a
wider area. This effect is less significant, but can be seen in Fig-
ure 9. For this graph, we normalized the curves to the1/28 scale-
down, to remove the effects of the shiftingt0. The higher scaledown
factors spread out the curve more to the right, decreasing somewhat
the absolute peak of the histogram. However, we do not yet have an
explanation for the slight shift of the peak to the left.



Thus, although scaledown is effective and useful, it is critical to
limit the amount of scaledown employed in practice, as the discrete
effects can become substantial. Unlike the shifting oft0, we cannot
compensate for these discrete effects using a simple mathematical
tweak.

5. HOMOGENEOUS CLUSTER MODEL
As we established in Section 3, Slammer’s behavior does not

match the assumptions of the Random Constant Spread model or
other models of propagation. We observed that this deviation is
probably due to bottleneck-bandwidth effects: multiple copies shar-
ing the same access link will compete with each other, with the first
infection able to start spreading at full rate, but with subsequent in-
fections not offering any additional benefit.

We first attempt to model this in an abstract manner. We assume
that the core of the Internet is “perfect”: full bandwidth and zero
latency. We can safely ignore latency because it has little effect on
Slammer’s spread, as Slammer did not need to receive acknowledg-
ments. Additionally, worst-case latency is only in 100s of millisec-
onds, while Slammer’s initial doubling time had an 8 second pe-
riod [6]. Likewise, although many access links saturated, the back-
bone itself continued to operate during Slammer’s spread.

We model each infectible system as existing in a cluster ofC
systems which all share a common access link to the core. It is
this access link which represents the bottleneck, allowing onlyS
scans/second to traverse onto the Internet. We argue that this is
a reasonable assumption, as during Slammer’s propagation access
links tended to behave in one of three ways: crashing immediately,
crashing after BGP sessions were dropped [5], or remaining up.

If the link crashed immediately, no system behind the access link
would contribute to Slammer’s Internet spread. Yet these systems
would not be observed in our estimate of the infected population,
allowing us to ignore this effect. Likewise, if a link only crashes af-
ter several minutes of propagating Slammer, this would have no ef-
fect on Slammer’s propagation as most systems were compromised
within the first 5 minutes.

We don’t believe that a significant number of links crashed on a
timescale of>5 minutes, as Slammer’s aggregate scanning rate re-
mained constant for three hours [6]. Likewise, when we examined
our trace for Witty, over 1/2 the systems have a lifetime of> 5
minutes, despite Witty having a “kill the host” routine which dras-
tically shortens system lifetime. Similarly, in our trace, only 20%
of the systems are not seen in the last minute, suggesting that 80%
of the systems maintained connectivity throughout the 15 minute
trace of Witty’s propagation.

Our first model uses homogeneous clusters: all clusters have the
same link capacity and the same number of susceptible systems. As
we will see in Section 6, this model captures the most significant
behavior: the rapidly decreasing scanning-rate-per-worm curve, but
fails to provide a detailed match.

6. SIMULATING THE HOMOGENEOUS
MODEL

To investigate the homogeneous model using simulation, we
modified the worm simulator used in [10] to include clustering as
an option. For a parameter set, we used 73,728 systems in a 32 bit
address space, with 18 systems per cluster and a cluster scanning
rate of 15,000 scans/second. These parameters were chosen to ap-
proximately match the Slammer population and the beginning and
ending scanning-rate-per-worm figures associated with Slammer.

Figure 10 shows the scanning-rate results of 10 simulations of
the homogeneous cluster model, compared with the empirically

Simulated Scanning Rate for the Homogenious 
Cluster Model compared with Slammer
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Figure 10: 10 simulation runs for the homogeneous cluster
model, compared with empirically observed results (thicker,
dashed line).
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Figure 11: 10 simulation runs, showing the scanning rate per
worm for the homogeneous cluster model, compared with em-
pirically observed results (thicker, dashed line).



Simulated Scanning Rate for the Homogenious 
Cluster Model with 1/256 scaledown

0

50000

100000

150000

200000

250000

300000

0 1 2

Minutes After Release

Sc
an

s/
Se

co
nd

Figure 12: 10 simulation runs, showing the scanning rate for the
homogeneous cluster model with a scaledown factor of1/28

Simulated Scanning Rate for the Homogenious 
Cluster Model with 1/256 scaledown
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Figure 13: 10 simulation runs, showing the scanning rate per
worm for the homogeneous cluster model with a1/28 scale-
down factor.

measured values, while Figure 11 shows the scanning-rate-per-
worm evolution. As can be seen, the homogeneous cluster model
presents the most salient feature: the radically reduced scanning-
rate-per-worm graph. Yet this deviates substantially in the details
when compared to reality, suggesting an incomplete model.

However, this model is sufficient to observe the effects of scale-
down. When we scaledown the model, not only do we see the shift
to the left and the spreading of the scanning-rate curves (Figure 12),
we also see a drastic increase in noise on the scanning-rate-per-
worm curves (Figure 13).

This noise is also due to discrete effects. Although a small
amount of noise appears in the system without scaledown, it greatly
increases with increased scaledown, as the probability of infecting
a new cluster versus an already existing cluster becomes more sig-
nificant. Thus, although scaledown works effectively in this model,
it does introduce an additional artifact when compared with scale-
down for a Code-Red-like worm: significant noise in the scanning-
rate-per-worm graph.
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Figure 14: The distribution of the number of BGP prefixes by
the number of infected systems in each BGP prefix

Distribution of Infected Systems by
Access Link Capacity
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Figure 15: The distribution of the number of worms by the
number of infected systems in each BGP prefix

7. HETEROGENEOUS CLUSTER MODEL
Since the homogeneous model is obviously insufficient, we at-

tempt to refine our model using previous observations of Slammer’s
spread. We began by trying to obtain from providers topology maps
of portions of the Internet which included bandwidth information,
but this proved difficult, and while we did eventually acquire a sig-
nificant amount of data in this regard, analyzing it and incorporat-
ing it into our modeling remains for future work. For the present,
we instead simply approximate the access link distribution.

We used the BGP information from RouteViews [9] to get a list
of all routed prefixes. Using this list, we mapped each Slammer in-
fectee into the most precise prefix. We then operated under the as-
sumption that each routed prefix uses an independent access link,
so only infectees that shared a prefix might interfere with one an-
other.

We graph the distribution of the access-links by the number of
worms in Figure 14. The plot shows that most access links have
only a few susceptible machines; that is, the typical access link did
not service a large cluster of infectees.

The next graph, Figure 15, plots the distribution of the number of
infectees by the cluster size the infectee resided in. It shows, unlike
the first plot, that the typical infecteedid find itself in a large cluster
of infectees. The two figures together convey that there were a few



Scanning Rate for the Heterogeneous Cluster 
Model (1/64 scale) compared with Slammer
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Figure 16: The scanning rate for 5 runs of the scaled hetero-
geneous model, compared with a1/64 scale of the empirical
results for Slammer (thicker, dashed line)

quite-large clusters of infections; thus, most access links only had a
few infections, but most infectees were part of a few large clusters.

We now can formulate a heterogeneous clustering model, in
which we use the empirical distribution of clusters-per-prefix as
shown in Figure 14, but retain an approximation that all of the ac-
cess links have identical capacity. This gives us a model of the Inter-
net where the susceptible machines are clustered based on assumed
topology, but all the access links are identical.

8. SIMULATING THE HETEROGENEOUS
CLUSTER MODEL

Once we have this model, we can then directly simulate it in a
scaled-down form on the DETER [2] testbed. Our simulator uses
a message passing mechanism to communicate worm-infection-
attempts between systems which emulate large clusters of infectible
systems. This simulation is able to emulate the worm in real-time,
as a building block for testing larger defense systems.

To meet the realtime constraints, we needed to scale the experi-
ment down by1/64. Since this is a more complex, realtime simu-
lator running on an actual testbed system, we must use at least this
scaledown factor in order to meet the constraints of the testbed.
In order to generate the topology used in the experiment, we ran-
domly selected access links, and added them to our simulation. We
repeated this process until the total number of systems behind the
selected access links was1/64th of the total number of infected
systems observed. Doing so keeps the density of infected systems
constant, and selects a distribution of access links comparable to the
observed distribution. To set the access link bandwidth, we selected
a value which matched the final scanning-rate-per-worm, which
gives us a scanning-rate per access link of 4,300 scans/second.

As can be seen in Figure 16 and Figure 17, the heterogeneous
cluster model produces a better set of results, more accurately
matching the smoothness of Slammer’s scanning rate and scanning-
rate-per-worm curves. However, that the model is still not perfect
suggests that the remaining homogeneous assumption of uniform
access link capacity does not suffice. Thus, we have shown that we
cannot assume a homogeneous distribution of infectible machines,
and we cannot treat the access links as identical. If we wish to im-
prove our model further, we will need to account for the varying
capacities of the access links, not just the distribution of infected
machines.

Scanning Rate/Worm for the Heterogeneous 
Cluster Model (1/64 scale) compared with Slammer
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Figure 17: The scanning rate per worm for 5 runs of the
scaled heterogeneous model, compared with empirical results
for Slammer(thicker, dashed line)

9. FUTURE WORK
We are currently striving to improve our model by accounting for

access link capacities, since simply assuming all links are identical
is insufficient. Thus, to increase the fidelity of our model, we will
require a more refined Internet topology model.

Additionally, we are currently investigating Witty to verify that
our modeling framework is generic for this class of worm. Al-
though we have an initial indication, our datasets are currently not
complete, and we have yet to fully analyze Witty’s propagation in
the same detail which we analyzed Slammer’s.

We are also working on a Kermack-McKendrick model [1] that
captures both the homogeneous and heterogeneous cluster mod-
els. Although a K-M model cannot capture the stochastic effects, it
should be useful in verifying our simulations and modeling.

10. CONCLUSIONS
Scaledown is an important technique for modeling Internet-scale

events, as it can make an otherwise intractable simulation tractable.
For the case of a classic Code-Red-like scanning worm, scaledown
introduces two notable artifacts: a bias towards more rapid propa-
gation (the “shift to the left”) and an increase in stochastic effects.
Although these artifacts are significant, scaledown can still capture
general behavior as long as the scaledown factor is not too extreme.

We have observed a particular behavioral signature for
bandwidth-limited worms such as Slammer and Witty: a dropping
scanning-rate-per-worm. We have developed two models, the ho-
mogeneous cluster model and the heterogeneous cluster model,
which replicate this behavior, suggesting that access link conges-
tion is the source of this signature.

The homogeneous model, although of lower fidelity, can be ex-
plored via a full simulation. Since we have a full simulator, we can
verify the effects of scaledown for other experiments.

The heterogeneous cluster model uses AS topology (globally
visible network prefixes) as an approximation for actual network
topology. Our simulator runs in realtime, with tolerable (1/64)
scaledown on the DETER testbed. This model is more accurate,
but still insufficient, suggesting that the assumption of uniform ac-
cess link capacity is insufficient to model Slammer. Instead, a high-
fidelity model will require a more refined model of Internet topol-
ogy.
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