
The SFRA:
A Corner-Turn FPGA Architecture

Nicholas Weaver
∗

CS Department
UC Berkeley
Berkeley, CA

nweaver@icsi.berkeley.edu

John Hauser
CS Department

UC Berkeley
Berkeley, CA

jhauser@jhauser.us

John Wawrzynek
CS Department

UC Berkeley
Berkeley, CA

johnw@cs.berkeley.edu

ABSTRACT
FPGAs normally operate at whatever clock rate is appro-
priate for the loaded configuration. When FPGAs are used
as computational devices in a larger system, however, it
is better to employ fixed-frequency FPGAs operating at a
high clock frequency. Such fixed-frequency arrays require
pipelined interconnect structures, which are difficult to sup-
port in a traditional FPGA architecture. We have devel-
oped a novel approach, called a “corner-turn” interconnect,
based on a Manhattan array of logically depopulated S-
boxes with full connectivity but limited routability. This
interconnect supports new polynomial-time routing tech-
niques while maintaining conventional placement and other
upstream toolflow. We have used the corner-turn inter-
connect to define a fixed-frequency FPGA architecture, the
SFRA, that is largely compatible with the Xilinx Virtex
while providing higher speed, pipelined operation. Our tools
automatically repipeline designs to operate at the SFRA’s
intrinsic clock frequency. Since the arrays are largely com-
patible, we directly compare the SFRA with the Virtex on
four benchmark designs. On these benchmarks, the SFRA
offers higher throughput and competitive throughput per
area. The SFRA routing and retiming tools also run one
to two orders of magnitude faster than their Xilinx counter-
parts.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architectures—
Field Programmable Gate Arrays; C.4 [Processor Archi-
tectures]: Design Study

General Terms
Performance, Design

∗Nicholas Weaver is now at the International Computer Sci-
ence Institute

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’04,February 22-24, 2004, Monterey, California, USA.
Copyright 2004 ACM 1-58113-829-6/04/0002 ...$5.00.

Keywords
FPGA Architecture, FPGA CAD, FPGA Optimization,
FPGA Design Study

1. INTRODUCTION
Conventional FPGAs do not pre-determine the clock fre-

quency at which configurations will run but rather support
arbitrary clock signals up to some frequency limits. Of-
ten, the operating clock frequency is set to the maximum
that a configuration allows, as determined when the de-
sign is mapped to the target FPGA. When FPGAs inter-
face with a traditional microprocessor or other pieces of a
computational system, the FPGA clock (or clocks) must be
made compatible with the processor clock. In such cases,
it is preferable to construct a fixed-frequency FPGA, which
operates at a set clock rate regardless of the configuration
mapped onto it.

Besides being easier to integrate, fixed-frequency FPGAs
have the advantage that they can be designed to operate at
a higher clock rate than is possible for normal FPGAs. Thus
any computation that can be pipelined will run considerably
faster on a fixed-frequency FPGA.

As interconnect times usually dominate in conventional
FPGAs, fixed-frequency FPGAs generally require pipelined
interconnect and routing structures. However, previous fixed-
frequency arrays either introduced difficult placement prob-
lems or contained highly restrictive interconnect topologies
which limited their applicability.

In order to develop fixed-frequency arrays that are com-
patible with conventional placement and synthesis techni-
ques, we need routing structures where the interconnect and
switches contain pipeline registers. But simply adding pipe-
lined switches to a conventional FPGA would be impracti-
cal, as this would require far too many registers or, if not all
switches include registers, potentially complicate the routing
problem.

Thus we desire a switch structure that maintains the con-
ventional Manhattan placement common to conventional
FPGAs, yet which can be efficiently pipelined. We devel-
oped such an interconnect topology, which we call a “corner-
turn” interconnect, based on capacity-depopulated cross-
bars. This interconnect supports efficient pipeline switches,
fast routing algorithms, and defect tolerance, and is particu-
larly well suited to fixed-frequency applications and coarser-
grained FPGA architectures.

Using this interconnect design, we have defined a proto-

LEC-Box

C
-B

oxS-Box

LEC-Box

C
-B

oxS-Box

LEC-Box

C
-B

oxS-Box

LEC-Box

C
-B

oxS-Box

LEC-Box

C
-B

oxS-Box

LEC-Box

C
-B

oxS-Box

LEC-Box

C
-B

oxS-Box

LEC-Box

C
-B

oxS-Box

Figure 1: The classical components of a Manhattan
FPGA: the LE (logic element) performs the com-
putation, the C-box (connection box) connects the
LE to the interconnect, and the S-box (switch box)
provides for connections within the interconnect.

(A) (B) (C)

Figure 2: (A) A crossbar switch-box. (B) A
physically depopulated crossbar. (C) A capacity-
depopulated crossbar.

type fixed-frequency FPGA architecture, the SFRA,1 which
has CLBs that are nearly identical to the Xilinx Virtex [16]
but with the new registered routing interconnect. Thus, ex-
cept for routing and retiming, the SFRA is largely design-
and tool-compatible with the Xilinx Virtex. Like other fixed-
frequency architectures, all designs must be either repipe-
lined or C-slow retimed to match the FPGA’s delay model.
Unlike previous fixed-frequency architectures, the SFRA ar-
chitecture works with the conventional Xilinx synthesis, map-
ping, and placement tools.

We have created a complete architecture and toolflow for
the SFRA, as well as layout for portions of the interconnect.
Our resulting array is of comparable size to previous fixed-
frequency arrays, and the toolflow for routing and retiming
is an order of magnitude faster than the Xilinx routing tool,
requiring slightly more than a minute to route and retime
a large benchmark. Additional details about this work are
available [14].

2. THE CORNER-TURN TOPOLOGY
Manhattan-structured FPGAs, as commonly visualized in

Figure 1, consist of 3 main pieces: logic elements (LEs)

1“SFRA” means either “Synchronous and Flexible Recon-
figurable Array” (based on its fixed-frequency routing ar-
chitecture) or “San Francisco Reconfigurable Array” (based
on the numerous “No Left Turn” signs in the city of San
Francisco).

LE
T

LE
T

LE
T

LE
T

LE
T

LE
T

LE
T

LE
T

Figure 3: Our corner-turn FPGA interconnect. To
simplify matters for our purposes, the C-boxes are
implemented as full crossbars, while the S-boxes
use capacity-depopulated crossbars to create corner
turns, marked as T-boxes on this illustration.

that perform the actual computation, connection boxes (C-
boxes) which connect the logic elements to the general in-
terconnect, and switch boxes (S-boxes) used to route signal
in the general interconnect. Parameters of the architecture
include the number of signals in each channel (the chan-
nel capacity), and the number of bits routed as a unit (the
bitwidth or granularity).

If routability was the only criteria, the C-boxes and S-
boxes would both be full crossbars, as in Figure 2(A), en-
abling the C-boxes to use any wire as an input or output
and the S-boxes to connect any input to output. Unfortu-
nately, crossbars, especially for the S-boxes, are usually too
expensive as they require O(N2) switches to implement for
a channel capacity of N bits.

The common solution, as shown in Figure 2(B) is to cre-
ate a physically depopulated crossbar. Such crossbars are
constructed by removing switches until a desired balance
between cost and routability is achieved. There are several
methods for constructing these depopulations, ranging from
the classic diagonal pattern, ad-hoc removal of switches,
to analytic techniques based on multiple routing trials [9].
These depopulations usually enable every wire to be routed
between the two channel, but with limited connectivity be-
tween the channels. Thus each particular signal can only be
routed to particular destination wires.

Most conventional FPGAs use physically depopulated
crossbars to implement both the C-boxes and S-boxes. Un-
fortunately, such structures are not very suitable for creating
a fixed-frequency FPGA. If most or all of the connections in
the S-boxes are registered, this would require a prohibitive
number of registers. If only a small subset of the S-box con-
nections were registered, this would complicate an already
difficult routing problem.

An alternate approach is to create a capacity-depopulated
crossbar, as in Figure 2(C). The desire is to maintain the
any-to-any connectivity of a crossbar, while sacrificing the
capacity that can be routed. Thus instead of attempting to
depopulate connectivity, this strategy depopulates capacity.
In this approach, a limited number of total signals can be
routed between the two channels.

By using these capacity-depopulated switchpoints in a
Manhattan FPGA, we create what we call a “corner-turn”
interconnect, as seen in Figure 3. The corner-turn name
comes from the observation that this interconnect form

prefers straight lines, with each “turn” from horizontal to
vertical or vertical to horizontal being a very limited re-
source. In the construction we studied, the C-boxes are
implemented as full crossbars, with each input and out-
put connected to both the associated horizontal and vertical
channels. The S-boxes are replaced with T-boxes, capacity-
depopulated crossbars with the capacity described as the
number of turns supported. Each turn is able to route a
signal from the horizontal to vertical channel direction and
a separate signal from the vertical to horizontal channel.

For simplicity, we assume that the C-boxes are full cross-
bars. This assumption makes it easy to perform fast detailed
routing at the cost of some efficiency. As discussed later, we
are confident the C-boxes could also be depopulated with-
out sacrificing fast detailed routing, but we have deferred
this issue to later research.

Unlike conventional switchpoints, there are several advan-
tages to a corner-turn topology that result from the use of
reduced-capacity S-boxes instead of physically depopulated
S-boxes:

Fast Routing: As detailed in Section 4, both global and
detailed routing use fast, polynomial-time heuristics. De-
tailed routing uses known techniques, while global routing
uses new algorithms. No step is worse than O(N2) in the
worst case.

Pipelined Switchpoints: If a conventional crossbar or
depopulated crossbar were to use pipelined switchpoints, it
would require numerous pipeline registers. A corner-turn
switchpoint, however, requires only two registers for each
turn, a substantial savings. This savings is particularly use-
ful given our goal to implement a fixed-frequency FPGA.

Potential Defect Tolerance: Any resource that can be
exchanged for another offers the potential for defect toler-
ance. It is obvious that with an additional turn and spare
wires, stuck-off failures or breaks in the T-boxes and routing
channels can be overcome by simply remapping the wires in
question from a defective connection to a working connec-
tion.

The problem is how to route a signal onto a stuck-on rout-
ing resource when that fault would otherwise cause inter-
ferance. If the interconnect uses a classical braiding pat-
tern, many stuck-on switchpoints in the C-boxes can not
be avoided, as exploiting the stuck-on point will require us-
ing a wire with registers in different locations. However,
if all wires in a channel have breaks, rebuffering, or regis-
ters at the same locations, then a large number of stuck-on
and stuck-off faults in the C-boxes can be routed around by
transposing connections.

Asymmetric Routing Channels: In Hallschmid [6]
and elsewhere, it has been argued that asymmetric rout-
ing channels, where the horizontal and vertical capacities
are significantly different, may have significant advantages.
Although Betz [1] argues this is not the case for rectangualre
arrays, hotspots will occur in non-rectangular arrays which
are embedded in larger systems. As a related observation,
if a design following Rent’s Rule is mapped to a Manhattan
FPGA using common placement techniques, more intercon-
nect will be required for larger FPGAs.

Because the corner-turn switches maintain any-to-any con-
nectivity, it is easy to construct and route arrays where the
routing channels closer to the periphery have fewer wires, or
where the channel size is increased for larger arrays. Such
arrays do not affect the routability beyond the capacity lim-

its, as each channel is detail-routed independently. As the
bulk of any FPGA lies in the wiring and switching, this
strategy offers potentially large area savings.

Finally, as seen in Section 7, our bit-oriented FPGA based
on the corner turn topology is substantially larger than com-
mercial FPGAs although competitive with previous fixed-
frequency FPGAs. This disadvantage disappears when the
array’s basic operations occur on larger quantities. Thus
for arrays that operate on 8-bit or 16-bit bit quantities such
as those used by Chameleon [2], Matrix [10] and others, a
corner-turn interconnect may be desirable even when pipe-
lined interconnect is not needed, as the interconnect still
supports fast routing and potential defect tolerance.

The placement and upstream tool problems are essen-
tially the same for both conventional Manhattan FPGAs
and corner-turn FPGAs, although some minor changes in
the placement and synthesis cost functions are desirable as
slight misalignments in datapath elements will have a more
significant effect on routing.

3. OTHER FIXED-FREQUENCY FPGAS
There have been several previous fixed-frequency arrays.

In general, these arrays either have operated on restricted
designs or have imposed significant new tool problems. The
earliest examples include Garp [7], which coupled a fixed-
frequency reconfigurable functional unit with a micropro-
cessor. Garp’s interconnect fabric supported only limited
connectivity to maintain the target clock cycle. The RaPiD
[5] architecture provided a coarse-grained array of functional
units in a general interconnect. All long signals were ex-
plicitly pipelined to support high clock speeds. Similarly,
PipeRench [4] was limited to largely feed-forward designs.

The most general fixed-frequency array has been the
HSRA [13]. This array had a pipelined H-tree for the rout-
ing structure, ensuring that all designs would run at the
target clock frequency. The HSRA included retiming chains,
programmable-delay shift registers, on all inputs to balance
interconnect delays.

A significant limitation of the H-tree structure is that it
introduces a new placement problem. Instead of regular
Manhattan placement, the HSRA structure relies on recur-
sive bipartitioning. Although less of a concern for random
logic, this limitation can be significant when designs use dat-
apath synthesis techniques.

4. ROUTING FOR CORNER-TURN
NETWORKS

We perform routing for the corner-turn FPGA in two
stages, a global routing step, which assigns signals to partic-
ular channels and turns, and a detailed routing step, which
performs wire assignment within each channel. Since each
channel is independent, for detailed routing we use the well-
known greedy channel-packing technique, an O(N log N) op-
eration, with N being the number of signals within each
channel.

Global routing uses new techniques developed for this
style of interconnect. As only a limited number of turns are
available, global routing attempts to minimize the number
of turns taken by each signal. Not coincidentally, ff every
signal uses only a single turn, this also minimizes the de-
lay of all signals as they traverse the minimum distance and

(A)

S

(B)

Figure 4: The two alternatives considered by fanout
routing a signal from the dark square to several des-
tinations: (A) start horizontal and branch vertically;
(B) start vertically and branch horizontally.

pass through the minimum number of switches necessary to
route the design.

Our global routing occurs in five distinct passes: 1) di-
rect routing of any signal which does not require switch-
ing; 2) routing nets with high fanout to share switches; 3)
“pushrouting” phase which attempts to route all remain-
ing nets using a single turn; 4) zig-zag routing phase which
attempts to discover two-turn routes; and 5) probabilistic
rip-up-and-reroute cleanup phase which attempts to rip-up
previously routed nets to route new nets.

Direct routing, the first phase, selects all nets which can
be routed without using a turn. These nets are assigned to
the appropriate channels and removed from further consid-
eration. This step is linear in the number of signals to be
routed.

The second phase, fanout routing, attempts to route large
fanout nets and maximize the sharing of turns. Since later
phases route all point-to-point connections independently,
this phase is necessary to enable sharing of limited turn re-
sources between destinations. This phase begins by first
sorting all remaining nets by their degree of fanout. Then,
starting with the highest fanout net, all nets of fanout greater
than four are routed.2

Two possible routes are considered: starting horizontally
with vertical fanout and starting vertically with horizontal
fanout (Figure 4). At each switchpoint, a limited number
of turns are available for this routing step to preserve some
freedom for the later phases of routing. If only one route is
available, that route is selected. If both routes are available,
the route that uses the least number of turns is selected. If
no route is available, the net is routed by later steps. Any
routes selected in this phase are locked down and unper-
turbed by later routing steps. Due to the initial sort, this
requires O(N log N) time, with N being the number of sig-
nals remaining.

After fanout routing, the bulk of the routing uses a tech-
nique we call “pushrouting” that considers all nets as in-
dividual point-to-point signals. All unrouted nets are first
sorted to give a higer priority to short nets (which become
less routable in later phases) and nets on the critical path.
Pushrouting observes that for every net, there are only two
possible one-turn routes, making it feasible to perform a

2Four is simply a parameter we determined by experimen-
tation, as fanout nets are locked during later routing steps.

comprehensive search to see if a route for a group of nets
exist.

For each net, if one of the possible two routes has a free
turn, the net is assigned to the available turn. Otherwise, a
depth-first search is conducted, beginning at the two possi-
ble turns, to determine if a series of adjustments exists that
can provide a free location for the net.

Due to the limited freedom of routing, pushrouting is com-
prehensive if it is the only technique employed. However, be-
cause high fanout nets are locked, there may be some minor
variation in routability due to the order that nets are routed.
Since this process performs a depth-first search for each net
routed, it is possible to require visiting all previously routed
nets in the process, making the maximum running time of
this step O(N2), with N representing the number of signals
remaining to route.

After pushrouting, the remaining nets are “zig-zag” routed.
Each net is examined to see if there exists a two-turn route
for it. As longer nets have more possible routes, the pre-
vious pushrouting phase attempts to route short nets first,
ensuring that any remaining nets are more easily routed dur-
ing this phase. This phase is linear in the number of nets,
although the number of turns that need to be examined de-
pends on the average length of each net.

A final phase is a probabilistic rip-up-and-reroute step.
This step is the most costly for each net, although it is
usually limited in scope. This process iterates over the set
of unrouted nets until no further progress can be made. For
each net still not routed, it is first determined whether it
can be pushrouted or zig-zag routed. If not, the two possible
switches involved in a one-turn route are examined.

All possible nets that could be unrouted to enable this
net to route are examined by a breath first search. One of
these nets is probabilistically selected, with preference given
to long nets that are more likely to be zig-zag routable. For
each net, this process may require O(N) steps in the worst
case, with N being the number of signals in the design, but
in practice usually considerably less. As this technique is
only suitable for routing the last few nets, the number of
iterations is capped.

In experimenting with the number of hardware turns as a
parameter, we have observed that the fanout and pushrout-
ing are the most successful phases. Although there are some
cases where the zig-zag and probabilistic rip-up steps can
route the last few nets, they are far less successful at finding
routes because these steps require more turns per signal to
complete.

5. FIXED-FREQUENCY RETIMING
Any fixed-frequency FPGA must either restrict the user’s

designs to meet the array’s pipeline requirements or must
automatically transform designs to meet these constraints.
For a given design, registers can be moved using retiming
[8] to determine if the design can meet the constraints.

If a design fails to meet the constraints, it must be modi-
fied to match the array’s timing model. A feed-forward de-
sign can be automatically repipelined, but any design with
a feedback loop presents difficulty. A common technique is
C-slow retiming [8]. The only difference between repipelin-
ing and C-slow retiming is where the registers are added.
Repipelining simply adds k registers to every design input
before attempting to retime the design, wherease C-slow
retiming replaces every register with C registers before re-

4-LUT
Retime
Retime
Retime
Retime 1

0

1
0 1

4-LUT
Retime
Retime
Retime
Retime 1

0

1
0 1

Retime

Retime

F5
F6

From F5
of other slice To F6

of other slice

G1

G2

G3

G4

BY

F1

F2

F3

F4

BX

YB

Y

XB

X

COUT

CIN

Figure 5: The Slice used by the SFRA

timing. Once retimed, a C-slowed design operates on C
independant data streams in a round-robin fashion. Be-
cause we wish to accept arbitrary designs containing feed-
back, not just feed-forward pipelines, our tool only performs
C-slowing.

In either case, the retiming process is used to determine
the minimum number of registers which must be added to
the design. For most fixed-frequency architectures (includ-
ing the SFRA) there are no global constraints in this pro-
cess. Rather, local constraints are used to mandate that
every connection is appropriately registered to meet the ar-
chitecture’s requirements. These constraints can be solved
in O(N2) time (with N the number of connections in the
design) using the Bellman-Ford shortest paths algorithm.

The retiming process will converge if the design has suffi-
cient registers and provides a placement for these registers.
We have observed that, if such a solution exists, the process
converges quickly. Thus instead of performing all N itera-
tions required by the Bellman-Ford algorithm, the process
can be halted considerably earlier. A binary search can be
used to find the minimum k or C required for a design.

The retiming technique is the same for all fixed-frequency
architectures; the only significant modification we make is
to integrate retiming with routing. We first perform an ini-
tial C-slow retiming based on an approximate delay model.
This retiming is used to prioritize signals that are on the
critical path so that critical signals will have no registers
added beyond the minimum necessary to account for rout-
ing delays. It is also used to measure the success of routing
in minimizing additional delays. After detailed routing, a
final retiming is performed, using the precise delay model of
the target architecture.

6. THE SFRA: A CORNER-TURN
ARCHITECTURE

To compare the benefits and costs of a fixed-frequency,
corner-turn architecture, and to take advantage of high qual-
ity commercial tools, we have defined a corner-turn archi-

120

2 2 208

2
2

20
8

CLB
T

120

2 2 208

2
2

20
8

CLB
T120

Figure 6: The CLB embedded in the routing net-
work

tecture with effectively the same CLB as the Xilinx Virtex
FPGA [16].

This architecture, the SFRA, is generally compatible with
the Virtex, albeit with some design restrictions. Designs
must use a single global clock to permit retiming and the
fixed-frequency model. Because of the semantic changes re-
quired by C-slowing, both resets and clock enables must
be expressed as combinational logic rather than using the
built-in primitives. Similarly, the use of LUTs as RAMs or
SRL16s is forbidden.3

The SFRA CLB contains two slices that are derived from
the Xilinx Virtex’s slice. Figure 5 shows the SFRA’s slice.
Due to the semantic restrictions, there is no longer any sup-
port for LUT-as-RAM or register clock enables and resets.
Thus the CE and SR inputs, and their associated logic, are
removed as unnecessary. The XQ and YQ outputs are also
not needed, as the explicit registers in the initial design are
converted to retiming elements during the C-slowing pro-
cess. To accommodate variable delays, all inputs are as-
sumed to have retiming chains. All outputs are registered,
with the carry chain registered every 4 CLBs.

During our experiments, we observed that, although the
BX and BY inputs and the YB and XB outputs are required
for design compatibility, they are seldom used in our bench-
mark designs. With the SFRA’s semantic restrictions, the
BX input is only used for the F5 multiplexer and to pro-
vide an external source for the carry chain, while the BY
input is only used for the F6 multiplexer. Similarly, the XB
and YB outputs are only used for tapping the carry chain
as part of a multiplier. Hence we modified these I/Os to
allow their use as turns by the router. In addition to the
turns formed by the BX/BY inputs of each slice, we provide
two additional turns per CLB. The array thus contains an
effective six turns per CLB, enough to pushroute easily all
our benchmarks.

The interconnect itself (illustrated in Figure 6) contains
120 wires in each horizontal and vertical channel. Although
significantly more than are needed for our benchmarks, the
channel capacity is comparable to the wiring resources in the
Virtex part. All inputs are sourced from both the horizontal
and vertical channels, with each input able to be sourced
from any wire. Similarly, all outputs can be driven onto
any wire in the channel, and an output can be directed onto
both the horizontal and vertical channels. There are no
restrictions to the allowed fanout in this interconnect.

3In our experiments with the LEON synthesized core, these
restrictions added less than 10% to the CLB count.

CLB
Output CLB

Input

Figure 7: The basic circuits of the SFRA’s inter-
connect. Each output is driven onto a series of 40
tristates, with each tristate driving an output wire.
Every output tristate in the same row drives onto
the same output wire. The output wires can then be
driven onto one of three different interconnect wires.
The general interconnect wires are broken and re-
buffered every 3 CLBs, with bidirectional registers
every 9 CLBs.

Every interconnect wire is broken every three CLBs with
a bidirectional buffer, and every nine CLBs with a bidirec-
tional register. These breaks are staggered evenly in the tra-
ditional braided fashion. The breaks help detailed routing
by providing small segments, and they increase performance
by rebuffering and pipelining connections.

Because all registers, switches, and outputs are pipelined,
the SFRA is a fixed-frequency architecture. The critical
path is from the output of a LUT or turn register, through
the output buffer, across up to nine CLBs of interconnect,
through the input buffer, and into the next register.

7. THE SFRA LAYOUT
We have constructed the layout for the routing channel

and CLB I/Os in a 180 nm process to evaluate the area and
performance of this proposed architecture. Within each C-
box (Figure 7), the output buffers consist of a set of initial
drivers, tristate buffer switches which route signals onto in-
termediate wires, and a set of output drivers that drive each
intermediate output onto one of three general interconnect
wires.4 The input buffers take signals from the general in-
terconnect and drive onto a set of local wires, where tris-
tate drivers are used to select individual signals onto a final
level of hierarchy. A multiplexer selects the final signal. All
drivers include associated state bits to store configurations.
The two turns per CLB are implemented as additional input
and output buffers associated with the CLB.

This strategy was chosen because it creates a hierarchical
network: The output drivers only drive a small number of
tristates, which only drive short segments of wires before
being buffered onto the general interconnect. The wires in
the routing channel only directly drive the local input re-
buffers, enabling long communication within the target cy-
cle. The rebuffering and the tri-state design on the input

4This minor restriction on outputs (no two outputs from
the same CLB can be routed onto the same group of three
wires) has effectively no effect on routing.

buffers allows this interconnect to support arbitrary fanout.
The diagram in Figure 7 presents only a simplified view of
the actual implementation.

There are two different versions of the pieces used in the
layout, a version where the routing channel’s pitch is two sig-
nals in the tile, and one where it is three, that have different
aspect ratios. Both use a row/column style addressing to en-
sure than only one point is actually active. These addresses
are driven directly from configuration bits, not decoders,
as general decoders require more area than six-transistor
SRAM cells. Also, the routing channel includes both the
bit-lines used to load configurations and the configuration
cells itself.

Metal-1 and metal-2 layers are used for local signals, with
metal-1 being used for signals parallel to the routing channel
and metal-2 used for perpendicular signals. Metal-3 is used
for the local wires in each routing channel, effectively the
lower end of the hierarchy. Metal-4 is used for the upper
level. Metal-5 and Metal-6 are used as a bridge, allowing
the vertical channel’s signals to be routed over active hori-
zontal interconnect. Also included in the routing channels
is a power distribution grid.

We completed the layout for the input and output buffers,
including the I/Os necessary to implement the corner turn.
This layout, outlined in Figure 8, includes all the configu-
ration bits, bit-lines to load configurations in parallel, and
the rebuffering which transfers local signals to and from the
metal-4 routing channels and the buffers used to break the
interconnect at a regular interval. We have not yet imple-
mented the interconnect registers, but include a reasonable
space for it in our layout. We have also not implemented
the CLB itself, but have left a more-than-sufficient space.

The resulting area is approximately 160,000 µm2. This is
roughly 3.9 times larger than the Xilinx Virtex E’s CLB tile
(with interconnect), but only 1.5x larger than the HSRA’s
tile. The gap in the tile for the logic cell is sufficient to
accommodate the entire Virtex E CLB tile, suggesting that
the SFRA’s CLB plus retiming registers could easily fit in
this space.

However the SFRA tile is substantially larger than the
approximately 5 Mλ2 Xilinx CLB. This is due primarily
to the cost of all the switches needed to implement the in-
put and output buffers, as every input or output needs to
be connected to every wire in the routing channel. Unlike
the Xilinx, the SFRA has pipelined interconnect and switch
points.

Simulation of the circuits suggest that the design can run
at 300 MHz, including “clk→Q” and setup time, based on
the critical path of an output register, through an output
buffer, across 9 CLBs of interconnect, through an input
buffer, and to an input register.

8. THE COMPLETE SFRA TOOLFLOW
The complete corner-turn toolflow begins with the Xilinx

tools that are used for design entry, placement, and map-
ping. The mapped output, an .ncd file, is converted to Xil-
inx’s textual representation, .xdl, before being loaded into
our back-end router and retiming tool.

We chose Xilinx’s placement tool for several reasons. Al-
though the ideal cost-function for a corner-turn array is dif-
ferent, the Xilinx’s hex lines and longlines create a similar
cost function where direct horizontal and vertical alignments
offer substantial benefits over slight misaligment. Also, by

Approximate
HSRA area for

four LUTs

Virtex
CLB
Tile

Ib
u

fs

O
b

u
fs

Ibufs

Obufs

SFRA
CLB
Gap

100
µm

Figure 8: The area required for the layout of the tile. The input buffers and output buffers include the I/Os
for the turn as well as the CLB, plus the configuration bits required. The wires for the channels are located
over the I/O buffers for the CLB. This area is compared with that of the Virtex E FPGA (determined by
die measurement) and a scaled four 4-LUT tile from the HSRA.

using existing placements, we can provide quantitative com-
parisons of routing time on identical designs.

Our back-end tool first performs an initial retiming, as
described in Section 5, to determine which nets are on the
critical path. The initial retiming uses a set of estimated
delays based on best-case routing. This information is used
both to gauge the precision of the router and to guide the
routing process. Nets that are on the critical path receive
priority during subsequent routing to minimize the delays
incurred.

Global routing proceeds, as outlined in Section 4, with
priority given to short nets and nets on the critical path.
The priority of short nets improves the preformance of the
zig-zag routing step by insuring that longer nets, with more
flexibility, will be more likely to be routed during this phase.

For detailed routing we simply use modified greedy rout-
ing within each channel. All nets in a channel are first sorted
by the endpoint before being routed. Each net is assigned
to the first available routing track that minimizes the num-
ber of registers crossed and the number of excess routing
slots used. Because of the inital sort, this step requires
O(N log(N)) time in the worst cas, with N being the num-
ber of signals in each channel. Finally, a second retiming
pass is performed using the actual delays produced by the
router.

9. EVALUTING THE SFRA
To evaluate our proposed architecture and toolflow, we

used four benchmarks: AES encryption [11], Smith/Water-
man (S/W) sequence matching [12], a synthetic datapath,
and the LEON 1 microprocessor core [3]. The Xilinx bench-
marks originally targeted the 250 nm Spartan II. To com-
pensate for the process differences, the Xilinx clock rates are
scaled by 1.4 (40%).

The AES, Smith/Waterman, and synthetic datapath de-
signs are heavily optimized for the Virtex architecture. These
applications are very appropriate for aggressive C-slowing,
as most usages attempt to optimize throughput. These three

benchmarks were hand-mapped, and for placement we have
included both hand-placed and automatically placed ver-
sions. Thus we can differentiate between placement either
by hand or through simulated annealing and the subsequent
effects on the router. The three benchmarks stress different
aspects, as AES uses bitwise operations and table lookups,
Smith/Waterman is almost entirely 16-bit arithmetic oper-
ations, and the synthetic datapath is typical of the core of
a 32-bit processor, including register file, shifter, and ALU.

The final benchmark, the LEON microprocessor core, is
a fully synthesized SPARC-compatible core. It was syn-
thesized using Synplify, with clock enables suppressed. To
allow C-slow retiming, the resulting EDIF was edited to re-
place hardware resets with explicit logic. Although it is not
sensible to aggressively retime a processor core,5 the LEON
core is very representative of designs that use HDL synthe-
sis and simulated annealing. Being over 6000 LUTs, it is a
substantial design.

All these benchmarks were placed using the Xilinx place-
ment tools (version 4.1) with maximum effort selected. The
Xilinx router times are also for maximum effort, as we have
noticed performance drawbacks when lower effort is used.
To provide an effective comparison, we also utilized our own
C-slow retiming tool we developed for the Virtex [15]. This
tool can effectively double the throughput on our bench-
marks when targeting the Xilinx Virtex. We therefore do
not just compare with what the Xilinx toolflow currently
supports, but also potential improvements. All tools were
run on a 550-MHz Pentium III with 256 MB of memory
running Windows 2000.

Our tool for retiming Virtex designs takes considerably
longer as general retiming requires a larger set of constraints
and O(N2) memory compared with linear memory usage
when targeting the SFRA. Our Virtex-targeting tool also
has an O(N3) operation that could be reduced to
O(N2 log(N)) in a more sophisticated implementation, with

5However, a 2-slow or 3-slow retiming produces a useful mul-
tithreaded architecture.

Benchmark Xilinx Custom Xilinx SFRA SFRA
Routing Time Retiming Time Routing Time Toolflow Time

AES (hand placed) 405 s 73 s 2 s 6 s
AES (autoplaced) 542 s 77 s 2 s 6 s
Smith/Waterman (hand placed) 104 s 178 s 2 s 8 s
Smith/Waterman (autoplaced) 102 s 169 s 2 s 9 s
Synthetic Datapath
(hand placed) 284 s 47 s 2 s 5 s
Synthetic Datapath
(autoplaced) 307 s 50 s 2 s 6 s
LEON (autoplaced) 432 s hours 11 s 62 s

Table 1: Time taken by the tools to route and retime the benchmarks, for both the Xilinx Virtex and the
SFRA. The SFRA toolflow time includes both routing and retiming, while the Xilinx retiming time excludes
the O(N3) Dijkstra’s step used to calculate the W and D matrixes (see text for explanation). The SFRA
router minimizes the number of turns required for each connection, and all connections use minimum-length
wires.

Benchmark Adjusted Xilinx SFRA Expected Speedup Area-
Clock Rate C-slow for 300-MHz Normalized

Factor SFRA Speedup

AES (hand placed) 67 MHz 24-slow 4.4x 1.1x
AES (autoplaced) 67 MHz 27-slow 4.4x 1.1x
Smith/Waterman (hand placed) 66 MHz 31-slow 4.4x 1.1x
Smith/Waterman (autoplaced) 60 MHz 37-slow 5.0x 1.3x
Synthetic Datapath
(hand placed) 77 MHz 21-slow 3.9x 1.0x
Synthetic Datapath
(autoplaced) 70 MHz 23-slow 4.2x 1.1x
LEON (autoplaced) 38 MHz 67-slow 7.9x 2.2x

Table 2: Throughput and Throughput/Area results for the unoptimized Virtex benchmarks when compared
with a 300-MHz SFRA.

N being the number of computational elements. To be fair,
we excluded the time required to perform this operation
when reporting our tool times. If this step were included
in our results, the time required to retime designs for the
Virtex would double.

Table 1 shows the vast differences in tool performance be-
tween targeting the Virtex and the SFRA. Wherease the Xil-
inx router may require minutes, the SFRA router completes
in a couple of seconds. Even the 6000-LUT LEON core can
be processed through the complete toolflow in slightly more
than a minute, with routing requiring only 12 seconds. Sim-
ilarly, for retiming, the Xilinx requires a couple of minutes
to several hours, while the SFRA toolflow, including two re-
timing passes, is an order of magnitude faster (and requires
considerably less memory, too).

In all cases, global congestion is considerably less than
the number of wires available in the routing channel. It
may be possible to reduce the size of the SFRA’s routing
channels without impacting performance. We do not mea-
sure detailed congestion as the detailed router uses the entire
channel to maximize performance.

Table 2 compares the unoptimized Xilinx designs with
the SFRA. Not only do the SFRA’s tools run considerably
faster, but the resulting designs also support higher through-
put. The expected speedup for a 300-MHz SFRA is sub-
stantial. Unfortunately, the limited quality of an academic
FPGA design becomes apparent if throughput is normalized
for area. We see speedups of 3x to 8x when comparing with
the unoptimized versions, but when normalized for area this
is reduced to 1.0x (no speedup) to 2.2x.

Of particular interest is the greater sensitivity of the SFRA
to poor placement. AES, although regular when viewed at
a macro level, is composed of highly irregular bit-mixing
operations, preventing the SFRA from significantly benefit-
ing from a hand-placed datapath. Smith/Waterman, on the
other hand, is composed of aligned arithmetic operations.
With automatic placement, the cumulative effect of small
misalignments becomes substantial. Note that the degraded
placement only affects latency (as reflected by a higher C-
slow factor); the throughput remains the same.

Table 3 repeats the experiments with our best automati-
cally optimized Xilinx implementations. Although the SFRA
is still faster for all benchmarks, the performance wins are
substantially reduced. Speedups are now only 2.0 to 4.6x,
and when normalized for area become 0.5x (a slowdown) to
1.2x, or within about a factor of 2 in the worst case.

10. OPEN QUESTIONS
Given that Virtex is a highly optimized, fifth-generation

commercial product, the fact that we are within a factor of
two is good for this stage of our research. Note that this
factor of two is after we used our custom C-slow retiming
tool to automatically reoptimize the Virtex designs. Com-
pared with the tools provided by Xilinx, the SFRA offers
comparable thoughput at a fraction of the tool time.

An important question is what further improvements to
our architecture could result in better efficiency. There are
three significant open questions remaining for the corner-
turn architecture: 1) Can the area be substantially reduced
by depopulating the input and output C-boxes? 2) Would
less channel capacity be sufficient? 3) How much savings
are achieved when the corner-turn interconnect is used for
coarser-grained arrays?

The first question arises from the following observation:
We utilized full crossbars for the input and output buffers
because of the speed and simplicity of the one-dimensional
greedy router. If we began to depopulate the full crossbars
which formed the C-boxes, this obviously would result in
vast area savings. However, depopulating the C-boxes com-
plicates detailed routing, as it is no longer possible to use
simple greedy channel packing. Intuition suggests that be-
cause the routing of each channel would still be independent,
there should almost certainly be fast heuristics that can op-
erate on most designs. The wiring in the channel could be
specifically designed to work with a particular heuristic. Ad-
ditionally, the ability to transpose most LUT inputs should
further ease the routing process.

Conversely, is it possible to reduce the channel size used by
the SFRA? The current C-boxes are considerably more flex-
ible than those employed by the Virtex, suggesting it may
be possible to use this flexibility to create narrower routing
channels. Similarly, it should be possible to reduce the ca-
pacity near the periphery to save area while maintaining full
capacity near the center of the array. This would reduce the
total size of the array by reducing the size of the C-boxes.

The final question is again related to the use of full cross-
bars to implement the C-boxes. Word-oriented crossbars
use far fewer switchpoints as fewer wires need to be directly
connected. Unfortunatly, there are no comparable coarse-
granularity FPGAs with mature toolflows that the corner-
turn strategy can be compared against. Thus we can not
effectively gauge the savings that might occur with this ap-
proach.

11. CONCLUSIONS
We have created a new FPGA interconnect architecture,

the corner-turn architecture, that offers several advantages
over conventional interconnects, including placement com-
patibility, fast routing, efficiently pipelineable switchpoints,
and the potential for defect tolerance. This interconnect
style can be quickly routed using fast, polynomial-time heuris-
tics that can route even large, 6000-LUT benchmarks in just
a few seconds. A corner-turn interconnect should be well
suited to fixed-frequency or coarse-grained FPGAs.

Using this interconnect style, we defined a prototype fixed-
frequency FPGA, the SFRA, that is largely compatible with
the Xilinx Virtex FPGA. Our tools operate an order of mag-
nitude faster than the Xilinx tools and the resulting designs
operate with a higher throughput when operating on sub-
stantial designs. Although our array’s area is considerably
larger than the Xilinx Virtex, it is comparable to previous
fixed-frequency FPGAs.

It is left to further research to prove that the area can
be reduced by compacting the C-boxes without losing the
advantages of the corner-turn architecture.

12. ACKNOWLEDGMENTS
Many thanks to Eylon Caspi for his advice on the seman-

tics of retiming. This work is partially sponsored by Xilinx
and the California MICRO program.

13. REFERENCES
[1] V. Betz and J. Rose. Effect of the prefabricated

routing track distribution on fpga area-efficiency, 1998.

Benchmark Adjusted Xilinx SFRA Expected Speedup Area
Clock Rate and C-slow for 300 MHz Normalized
C-slow Factor Factor SFRA Speedup

AES (hand placed) 147 MHz 5-slow 24-slow 2.0x .5x
AES (autoplaced) 123 MHz 5-slow 27-slow 2.4x .6x
Smith/Waterman (hand placed) 120 MHz 3-slow 31-slow 2.5x .6x
Smith/Waterman (autoplaced) 117 MHz 3-slow 37-slow 2.5x .6x
Synthetic Datapath
(hand placed) 127 MHz 3-slow 21-slow 2.4x .6x
Synthetic Datapath
(autoplaced) 123 MHz 3-slow 23-slow 2.4x .6x
LEON (autoplaced) 64 MHz 2-slow 67-slow 4.6x 1.2x

Table 3: Performance results for automatically C-slowed applications when compared with an 300 MHz
SFRA.

[2] Chameleon systems,
http://www.chameleonsystems.com/.

[3] J. Gaisler. LEON SPARC-compatable processor,
http://www.gaisler.com/leonmain.html.

[4] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu,
S. Cadambi, R. R. Taylor, and R. Laufer. PipeRench:
A coprocessor for streaming multimedia acceleration.
In International Symposium on Computer
Architecture, pages 28–39, 1999.

[5] C. E. D. C. Green and P. Franklin. RaPiD –
reconfigurable pipelined datapath. In R. W.
Hartenstein and M. Glesner, editors,
Field-Programmable Logic: Smart Applications, New
Paradigms, and Compilers. 6th International
Workshop on Field-Programmable Logic and
Applications, pages 126–135, Darmstadt, Germany,
1996. Springer-Verlag.

[6] P. Hallschmid and S. J. E. Wilton. Detailed routing
architectures for embedded programmable logic ip
cores. In Ninth international symposium on Field
programmable gate arrays, pages 69–74. ACM Press,
2001.

[7] J. R. Hauser and J. Wawrzynek. Garp: A MIPS
processor with a reconfigurable coprocessor. In
Proceedings of the IEEE Symposium on
Field-Programmable Gate Arrays for Custom
Computing Machines, pages 12–21. IEEE, April 1997.

[8] C. Leiserson, F. Rose, and J. Saxe. Optimizing
synchronous circuitry by retiming. In Third Caltech
Conference On VLSI, March 1993.

[9] G. Lemieux, P. Leventis, and D. Lewis. Generating
highly-routable sparse crossbars for plds. In
Proceedings of the International Symposium on Field
Programmable Gate Arrays, pages 155–164, February
2000.

[10] E. Mirsky and A. DeHon. Matrix: A reconfigurable
computing architecture with configurable instruction
distribution and deployable resources. In Proceedings
of the IEEE Symposium on Field-Programmable Gate
Arrays for Custom Computing Machines. IEEE, April
1996.

[11] NIST. Federal information processing standards
(FIPS) publication 197: Advanced encryption
standard, 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf.

[12] T. Smith and M. Waterman. Identification of common
molecular subsecquences, 1981.

[13] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker,
T. Tung, O. Rowhani, V. George, J. Wawrzynek, and
A. DeHon. HSRA: high-speed, hierarchical
synchronous reconfigurable array. In Proceedings of the
International Symposium on Field Programmable Gate
Arrays, pages 125–134, February 1999.

[14] N. Weaver. The SFRA: A Fixed-Frequency FPGA
Architecture. PhD thesis, University of California at
Berkeley, 2003. http://www.cs.berkeley.edu/ nweaver/
nweaver thesis.pdf.

[15] N. Weaver, Y. Markovskiy, Y. Patel, and
J. Wawrzynek. Post-placement c-slow retiming for the
xilinx virtex fpga. In Proceedings of the Eleventh ACM
International Symposium on Field Programmable Gate
Arrays (FPGA), 2003.

[16] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
Virtex Series FPGAs, 1999.

	Introduction
	The Corner-Turn Topology
	Other Fixed-Frequency FPGAs
	Routing for Corner-Turn Networks
	Fixed-Frequency Retiming
	The SFRA: A Corner-Turn Architecture
	The SFRA Layout
	The Complete SFRA Toolflow
	Evaluting the SFRA
	Open Questions
	Conclusions
	Acknowledgments
	REFERENCES -9pt

