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1 Introduction

In previous work [13], we have argued that the perfor-
Abstract mance pressures on implementing effective network se-
curity monitoring are growing fiercely in multiple dimen-
It is becoming increasingly difficult to implement effec- sions: (1) attacks continue to improve due to the adver-
tive systems for preventing network attacks, due to thé&arial nature of network security; (2) the power of sim-
combination of (1) the rising sophistication of attacks ple “signature matching"—looking for specific strings or
requiring more complex analysis to detect, (2) the re-regular expressions within packets or reassembled byte
lentless growth in the volume of network traffic that we Streams—has drastically dwindled due to the major prob-
must analyze, and, critically, (3) the failure in recent lems of false positives, polymorphism, and “zero day”
years for uniprocessor performance to sustain the exattacks; (3) moving beyond signature-matching requires
ponential gains that for so many years CPUs enjoyedsophisticated analysis of protocols at higher semantic
(“Moore’s Law”). For commodity hardware, tomorrow’s levels, and incorporatingontextcorrelated across mul-
performance gains will instead come framulticorear-  tiple connections, hosts, sensors, and over time; (4) in-

chitectures in which a whole set of CPUs executes concreasingly, we need to not only analyze traffic trahs-
currently. formit (“normalization” [8]) to eliminate broad classes

of evasionthreats, and, even more critically, to realize

cessors for network intrusion prevention requires an in-ntrusionpreventionsystems); and (5) all of this in the

depth approach. In this work we frame an architecture PreSence of ever-increasing traffic volumes and rates.
customized for parallel execution of network attack anal- In addition, in the face of all these performance
ysis. At the lowest layer of the architecture is an “Active Pressures we have also lost our traditional ace-in-the-
Network Interface” (ANI), a custom device based on anhole, Moore’s Law for uniprocessors. Starting around
inexpensive FPGA platform. The ANI provides the in-2002, the performance scaling curve for single CPUs
line interface to the network, reading in packets and for-has slowed precipitously. Over the fifteen prior years,
warding them after they are approved. It also serves aginiprocessor performance increased 50-60% per year.
the front-end for dispatching copies of the packets to a seBut by 2006, performance wasfactor of threeslower

of analysis threads. The analysis itself is structured as arthan had the pre-2002 curve continued.

event-based system, which allows us to find many oppor- To perform sophisticated network analysis, itis hugely
tunities for concurrent execution, since events introduceadvantageous if we can draw upon the flexibility and in-
a natural, decoupled asynchrony into the flow of analysisexpensive system costs of using general-purpose CPUs
while still maintaining good cache locality. Finally, by rather than custom hardware such as FPGAs and ASICs.
associating events with the packets that ultimately stimRecently, hardware vendors have begun delivering com-
ulated them, we can determine when all analysis for anodity CPUs that again reflect Moore's Law-style
given packet has completed, and thus that it is safe t@caling—but with the parallelization gains coming from
forward the pending packet—providing none of the anal-multi-core/multi-threadarchitectures. However, while
ysis elements previously signaled that the packet shoulthe aggregatedthroughput of such processors does in
instead be discarded. fact still follow Moore’s law, to exploit the full power

Taking advantage of the full power of multi-core pro-



of these architecture we must explicitly structure our ap-mized Aho-Corasick trees for sets of strings [21], and
plications in a highly parallel fashion, dividing the pro- specialized architectures based on collections of highly
cessing into concurrent tasks while minimizing inter-taskoptimized tiny state-machines [20].
communication. A vital point regarding much of the previous paral-
Taking advantage of the full power of multi-core pro- lel hardware design research is that it presumes a nearly
cessors requires an in-depth approach in order to reaktatelessapproach to attack detection. The systems ei-
ize speedups for sophisticated analyses that require fingher operate on single packets or assume that a separate
grained coordination between concurrent threads. Firsiprocess reassembles the TCP byte stream. Parallelizing
to provide intrusionpreventionfunctionality (i.e., ac- richer, stateful hardware elements, such as TCP stream
tive blocking of malicious traffic), we must ensure that reassembly, have not been explored in as much depth;
packets are only forwarded ill relevant processing see our previous work in [4] and the discussion of prior
gives approval. Second, to perform global analysis (e.g.efforts therein, including the vulnerability to such TCP
worm contact graphs [6] or content sifting [18]) we must processors tevasionattacks [15, 8].
support exchange of state across threads, but we must |n terms of parallelizingnigher-levelnetwork security
minimize such inter-thread communication to maximizeanalysis, we take our main inspiration from the work of
performance. Similarly, we must understand how theKruegel et al, who explored the design of front-end NIDS
memorylocality of different forms of analysis interacts |pad balancers [10]. They introduced the notiorskid-
with the ways in which caches are shared across threadfg: splitting up traffic not simply at a per-connection
within a CPU core and across cores. We need to be ablgranularity, but in a NIDS-analysis-aware fashion to en-
to express the analysis in a form that is independent tgure that packets germane to possible attack scenarios are
the memory and threading parameters of a given CPUg|| available to the processing element that assesses their
so we can automatically retarget the implementations ofssociated scenarios.
analysis algorithms to different configurations. Finally, However, the issue of such front-end dispatch be-
we must ensure that our approach is amenable to analypmes subtle because of the many formglobal anal-
sis by performance debugging tootbat can illuminate  ysjs For examplecontent sifting[18] requires looking
the presence of execqtion bottlenecks such as those dyg 5 |arge pool of potentially suspicious strings that may
to memory or messaging patterns. be taken from any connection, andntact graphanaly-
In this work we frame an architecture customized forsjs [6] can efficiently detect new worms, but requires a
parallel execution of network attack analysis. The goalglobal connection history within a time window. Many
is to support the construction of highly parallel, inline attacks seen today involve complex application-level ses-

network intrusion prevention systems that can fully ex-sjons that span multiple connections and sometimes mul-
ploit the power of modern and future commodity hard-tip|e hosts.

ware. We first discuss related work, including the large Thus, forin-line intrusion prevention operation, we
po.tential of parallel processing.fornetwork segurityanal need to go significantly beyond Kruegel's slicing ap-
ysis § 2). We then sketch a high-level overview of our yrqach 1o also incorporaté) ways of structuring the
architecture { 3), and explore what pursuing it would 4n4)ysis itself such that it is amenable to multi-core par-
mean in more concrete term§ 4), before briefly sum- yjiejization, and(ii) support forprevention(blocking)

marizing § 5). functionality.
Modern general-purpose CPUs. By relying on cus-
2 Reated Work tomized hardware rather than general-purpose CPUs,

commercial systems have difficulty in tracking Moore’s
Parallelizing analysis. To date, efforts on exploit- Law-style scaling, due to the low level at which paral-
ing parallelism for network security monitoring have lelism must be expressed (FPGA and ASIC designs) or
focused heavily orsignature scanningi.e., detecting Weak memory caching semantics (network processors).
whether a packet (or sometimes a reassembled byte Modern CPU designs include symmetrioulti-
stream) contains a string of interest or matches a reguthreadedCPU cores [1, 11], which allow a single CPU
lar expression, and executing an action (such as drop dp switch between multiple independent threads of exe-
alert) associated with the signature. Much of this workcution, andnulti-coresystems, where a single die holds
has drawn inspiration from the popularity of “Snort” [16] multiple CPUs [2, 11]. Recent systems support both:
and its large set of byte-level signatures. This work in-multiple CPUs each executing multiple threads.
cludes use of nondeterministic finite automata to match It is critical to recognize that to exploit the power of
regular expressions [17], compiling regular expressionsuch processors, programs must be specifically designed
into deterministic finite automata [12], building opti- to have a parallelizable structure. However, when devel-



oping software for these systems, not only is it crucial to Conceptually, the packet queues reside in the proces-
parallelize the program’s execution structure, but akso it sor’'s shared memory. In general, these writes will di-
memory access patterndAlthough multi-thread/multi-  rectly target the processor’s shared L2 cache. On mod-
core CPUs preserve the semantics of shared memomrn multi-core systems, such a write will invalidate the
with cache-coherence, memory locality and behavior cari1 cache entries local to the individual cores, enabling
completely dominate a program’s ultimate performance the threads executing in that core to detect that they have
In a multi-threaded core, the threads must share a cong new packet waiting for them and load it from L2 cache
mon working set, lest thrashing significantly degradeto L1 cache.
performance [9]. In contrast, on a multi-core system An important point is that unlike for the rest of the
having disjoint working sets on different cores can be aarchitecture, we make the presumption that the ANI
benefit as the L1 and often also the L2 caches are indeis customhardware, specialized for the task. Our re-
pendent. When coupled with independent memory coneent work has shown that we can construct such hard-
trollers [3], it becomes vital to create and feed the threadsvare efficiently and affordably using a simple FPGA
in a memory-aware manner. design [24]. There are already at least two suitable
Gbps Ethernet FPGA platforms available, the four-port
GIigE copper NetFPGA [23] and the 6 SPF (fiber) port
3 Overview of the Architecture HyperTransport-based HTX board [7].
We structure the analysis components as an event-
Figure 1 illustrates the overall structure of our architec-pzsed system, which we have developed in previous
ture. At the bottom of the diagram is the “Active Net- work as offering great power for network Security ana|y_
work Interface” (ANI). This component provides the in- sjs [14]. Doing so allows us to find many opportunities
line interface to the network, reading in packets and latefor concurrent execution, since events introduce a natu-
(after they have been approved) forwarding them. It alsqa|, decoupled asynchrony into the flow of analysis. By
serves as the front-end for dispatching copies of the packgssociating events with the packets that ultimately stim-
ets to the analysis components executing on differengjjated them, we can determine when all analysis for a
cores/threads. given packet has completed, and thus whether it is safe
The ANI drives its dispatch decisions based on a largao forward the pending packet.
connection table indexed by packet header five-tuple. parallelizing event execution requires care, however.
The table yields aouting decisiorfor each packet: ei-  First, temporal relationships exist between events, which
ther(i) which thread will analyze the packgi) thatthe  peans that their their subsequent handlers cannot execute
ANI should drop the packet directly without further pro- i arbitrary order. Second, event handlers tend to share a
cessing, ofiii) that the ANI should forward the packet |arge amount of state, and thus need to access the same
directly (to enable some forms of off-loading, as dis- memory, potentially blocking execution of other threads.
cussed below). There is an analogous table indexed by architecture envisions addressing these issues by in-
IP addresses to provide per-host blocking, and also degoducing multipleevent queuemhich collect together
fault routing for packets not found in either table. semantically related events for FIFO execution. Because
The analysis components populate the ANI's table enthe events are related, keeping them within a single queue
tries to control its dispatch procedure. For example, docalizes memory access to shared state. This in turn al-
component can install drop action to cut off a misbe-  |ows for efficient threaded execution of events since the
having connection, or alter the thread associated with dhreads can efﬁcienﬂy communicate (and lock data struc-
connection for purposes to improve locality of reference tyres, when necessary) by exploiting the per-core mem-
The ANI dispatches packets for analysis by writing ory caches.
them into queues in memory associated with the thread The analysis proceeds in stages. The initial stages con-
(and core) assigned to analyze the corresponding floveern jow-level tasks such as TCP stream reassembly and
It also sends a corresponding descriptor used to subs@prmalization, suitable to a single thread of execution.
quently refer to the packets. The ANI holds copies of theThis stage requires very little inter-thread communica-
packets locally pending approval to forward them, whichtion, It outputs events parameterized with parsed packet
an analysis component can signal by sending a contrgleaders and payload byte streams. The next stage per-
message that includes the descriptor back to the ANL.  forms application-layer protocol parsing. The outputs
- - . from th'is stagg are events reflecting appIica'tion—Ieve!
P shown by the solid line from CPU Core 1 to the ANIin the 4| information (requests and responses) with associ-
igure, the analysis components can also rewrite pendinkepacThis .
functionality is necessary to suppormalization which may require ~ ated ADUs. Finally, these events are consumed by mul-
altering the contents of packets [8]. tiple high-level analyzers that detect attacks both within
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Figure 1: Structure of proposed architecture for paraktekeation of network attack analysis.

application dialogs and across multiple connections andan be dynamically refined by the backend analysis en-
hosts. gine. This is the one non-commodity component of our
In the figure, each core has two queues associatedrchitecture, which we keep structurally simple to enable
with it, one for receiving packets from the ANI and implementingitin low-cost£ $2,000) specialized hard-
one for managing the events that its analysis generatesare, as already somewhat explored in [24].
and consumes. (Sharing queues across all of a core’s As argued in [13], the first task of a parallel analy-
threads minimizes potential thrashing of the limited L1 sis pipeline is flow demultiplexing: routing packets to
cache.) Communication between threads occurs eitheinalysis threads. For each packet, the ANI consults its
via the shared memory or by passing events. Eventfow table to decide which thread(s) is in charge of the
exchanged between threads executing in the same cot®rresponding flow and appends the packet to the packet
generally use the core’s event queue, while communicagueue of that thread’s core, directly copying the packet
tion across cores can use separate per-core queues (eigto the thread’s memory (L2 cache). This avoids the op-
“Core 1 MSG-Event-Q” in the figure). The figure shows erating system having to move the packets from a sin-
Core 1 inserting elements into the queue for Core 2, angjle queue over to the proper thread. If the ANI does
reading from its own MSG-Event-Q. Similarly, the sys- not find a flow-table entry, it forwards the packet to a
tem can receive externally generated events (e.g., from dispatcher thread that computes which thread should as-
host-based IDS) and send events to external agents (e.gume responsibility for the flow’s packet-level analysis
a global management console such as HP OpenView) viand update’s the ANI's flow table accordingly. An im-
“External MSG-Event-Q”. portant performance observation is that the tables the
ANI uses needn't be “perfect” [24]—we can tolerate oc-
casional inconsistent entries in the tables, since thétresu
4 Building Scalably Parallel Intrusion Pre-  of those entries is that packets are forwarded to the dis-
vention Systems patcher thread—which simplifies the hardware.
For in-line operation and potential intrusion preven-
Given the architecture presented in the previous sectiortion blocking, analysis threads inform the ANI about
we now discuss what would go into a concrete instanceheir go/no-go using packet descriptors that the ANI in-
of such a system. cludes with copies of the packets that it dispatches. The
First, in contrast to conventional network interface ANI also supports packet rewriting necessary fimor-
cards, the ANI is a stateful device whose functionality malization[8].



Regarding the higher-level analysis components, to efsingle shared memory to all of its cores and their threads,
fectively use multi-core CPUs to exploit the potential the system’s cache hierarchy imposesoauniform ac-
parallelism in network monitoring, we must: (1) identify cessmodel. Memory caching has major impact on
the optimal thread granularity for a given hardware ar-performance for highly stateful processing. Our archi-
chitecture so we can structure the data-flow accordinglytecture’s use of event queues promises to prove valuable
(2) devise scalable inter-thread communication schemesiere, too. By processing all events that relate to the same
(3) resolve intrusion-prevention go/no-go decisions inflow on the same core, we localize memory accesses, and
a timely and reliable fashion, and (4) support effectivethus can benefit from that core’s memory cache. Simi-
evaluation, profiling and debugging of such systems. larly, by placing related events into the same global event

In our envisioned approach, we assume there is exqueue, we can localize access patterns when executing
actly one thread responsible for the packets of a particuinter-flow analysis.
lar flow, to which the ANI dispatches the flow's packets;  Global correlation requires significant communication
however, this thread may instantiate new threads on debetween individual threads. We have explored tightly
mand, to either supplement or replace its analysis. coupled multi-CPU intrusion analysis in our work on

The first stages of analyzing a flow consist of relatively “Bro Cluster,” where a set of commodity PCs each an-
fixed blocks of functionality, such as reassembling a TCPalyze a share of the overall network traffic and synchro-
stream or decoding a particular application-layer proto-nize state via an interconnection network [22]. The syn-
col. We can structure these blocks into individual threadschronization traffic between the cluster nodes can exhibit
by following the data-flow of the processing, which pro- significant overhead; however, within a single multi-core
ceeds along the edges of analyzer tred5]. Assum-  system we can take advantage of its shared memory se-
ing a supply of inexpensive threads, the natural approachantics rather than explicit message-passing for thread
promises the greatest gain: one thread per analyzer witommunication. However, we still need to carefully
exploit the benefits of both data pipelining (for serial align the execution-locality of elements in the network
components of the dataflow, e.g., TCP decoding afteanalysis chain with the nonuniformities present due to
IP decoding) and parallel processing (for computationghe underlying system’s cache hierarchy. We can pur-
that we can perform concurrently, e.g., running multiplesue this via restructuring detection algorithms in terms of
application-layer analyzers). At this point we do not re- how they modify or interpret shared state; or by changing
quire any inter-thread communication. the semantics of the communication primitives, such as

After the initial, fairly fixed stages of analysis comes introducing explicittoosesynchronization [19] and em-
the execution of handlers for the events produced by th@hasizing randomized analysis algorithms that by design
protocol parsers. Each packet can stimulate execution ¢fan cope with occasional irregularities.
multiple event handlers, and these handlers can gener- For our system to realize intrusion prevention func-
ate further events, or cause side effects such as changinignality, a key problem is that the analysis events are
global state. We cannot blithely execute in parallel thedecoupled from the packets that ultimately trigger their
event handlers triggered by an arriving packet becausgeneration. A particular packet may trigger any from
events have eemporalorder among them. To control the zero to many events, and several packets may all con-
parallel execution of events, we define multiple, indepen+ribute to a single event. However, eveuigectly trig-
dentevent queuedithin the architecture, the semantics gered by lower-level analysis will be generated very
of these queues allows processing of events from sepahortly after the ANI receives the corresponding packet.
rate queues to execute concurrently; but all events insidEor these events it is feasible for the ANI to hold each
a single queue are processed sequentially. packet until all of the events it engenders execute to com-

In our design, we assign one such event queue to eagbletion. This approach does not apply for more global
CPU core. However, event handlers can generate nef@orms of analysis; however, due to the global nature
events which semantically might no longer be tied to aof such analysis, the blocking associated with detection
particular flow anymore. For these, we include globalwill in general refer tanore coarse-grained entities than
event queues into which analyzers can insert such eventiows For example, upon detecting a scan it is very likely
Again, we dedicate a thread to each global queue to ovetolerable that the packets of the scan (so far) have already
see the sequential execution of its corresponding everieached their destination—as long as oneemasurethat
handlers. the system will block any further activity by the originat-

While concurrent event processing already promisednd host.
a large gain in performance by itself, there is further, Finally, for profiling and debugging of such systems,
major performance consideration: patterns of memorywe are particularly interested i(i) identifying race con-
accesses. While a general-purpose processor presentsligions, and(ii) understanding memory access patterns.
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