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ABSTRACT

Stateful, in-depth, inline traffic analysis for intrusioatdction and
prevention is growing increasingly more difficult as theedates of
modern networks rise. Yet it remains the case that in manyamv
ments, much of the traffic comprising a high-volume stream ca
after some initial analysis, be qualified as of “likely urdrgsting.”
We present a combined hardware/software architec&hanting
that provides a lightweight mechanism for an intrusion preion
system (IPS) to take advantage of the “heavy-tailed” natéirest-
work traffic to offload work from software to hardware.

The primary innovation of Shunting is the introduction ofims
ple in-line hardware element that caches rules for IP addseand
connection 5-tuples, as well as fixed rules for IP/TCP flagse T
caches, using a highest-priority match, yield a per-pagk&etsion:
forward the packetdropit; or divertit through the IPS. By manip-
ulating cache entries, the IPS can specify what traffic itorgér
wishes to examine, including directly blocking maliciowisces
or cutting through portions of a single flow once the it has had
opportunity to “vet” them, all on a fine-grained basis.
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1. INTRODUCTION

Stateful, in-depth, inline traffic analysis for intrusioetdction
and prevention is growing increasingly more difficult as tiaa
rates of modern networks rise. One point in the design sparce f
high-performance network analysis—pursued by a numbeosrof c
mercial products—is the use of sophisticated custom haviror
very high-speed processing, such systems often cast tine a@mal-
ysis process in ASICs.

In this work we pursue a different architectural approasfnnt-
ing, which marries a conceptually quite simple hardware device
with an Intrusion Prevention System (IPS) running on comityod
PC hardware. Our goal is to keep the hardware both cheap and
readily scalable to future higher speeds; and also to rétaimn-
paralleled flexibility that running the main IPS analysisairfull

We have implemented a prototype Shunt hardware design usinggeneral-computing environment provides.

the NetFPGA 2 platform, capable of Gigabit Ethernet operati
In addition, we have adapted the Bro intrusion detectiotesygo
utilize the Shunt framework to offload less-interestindfita We
evaluate the effectiveness of the resulting system usaugs from
three sites, finding that the IDS can use this mechanism toaaffl
55%-90% of the traffic, as well as gaining intrusion prewamti
functionality.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection

General Terms
Security
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The Shunting architecture uses a simple in-line hardwage el
ment that maintains several large state tables indexed tkepa
header fields, including IP/TCP flags, source and destimdfo
addresses, and connection tuples. The tables yield deoisie
ues the element makes on a packet-by-packet basis: forlvard t
packet, drop it, or divert (“shunt”) ithroughthe IPS (the default).
By manipulating table entries, the IPS can, on a fine-grabzesis:

(i) specify the traffic it wishes to examin@i) directly block ma-
licious traffic, and(iii) “cut through” portions or complete traffic
streams once it has had an opportunity to “vet” them.

For the Shunting architecture to yield benefits, it needsptr-o
ate in an environment for which the monitored network tréfiis
the property that—after proper vetting—much of it can beslyaf
skipped. This property doest universally hold. For example, if
a bank needs to examine all Web traffic involving its servers f
regulatory compliance, then a monitor in front of one of thalds
server farms cannot safely omit a subset of the traffic froedyesis.

In this environment, Shunting cannot realize its main penémce
benefits, and the monitoring task likely calls for using oushard-
ware instead.

However, in many other environments we expect Shunting to po
tentially deliver major performance gains. Our basis faés tton-
jecture rests in the widely documented “heavy tail” naturenost
forms of network traffic [19, 21, 8, 29, 28, 7], which we might e
press as “a few of the connections carry just about all thedyt
The key additional insight is “... and very often for these farge



connections, the vergeginningof the connection contains nearly
all the information of interest from a security analysisgparctive.”

We argue that this second claim holds because it is at the-begi
ning of connections that authentication exchanges ocaig dr
file names and types are specified, request and reply staties co
conveyed, and encryption is negotiated. Once these oceunawe
seen most of the interesting facets of the dialog. Certaheyre-
mainder of the connection might also yield some grist forlysis,
but this isgenerally less likelyand thus if we want to lower anal-
ysis load at as small a loss as possible of informat&lavant to
security analysiswe might best do so by skipping the bulk of large
connections. In a different context, the “Time Machine” wéy
Kornexl and colleagues likewise shows that in some envientm
we can realize major reductions in the volume of networkfitraf
processed, by limiting the processing to the first 10-20 KBaufh
connection [14].

As a concrete example, consider an IPS that monitors SSH traf
fic. When a new SSH connection arrives and the Shunt fails do fin
an entry for it in either of its per-address and per-conoedibles,
it executes the default action of diverting the connectimough the
IPS. The IPS analyzes the beginning of the connection irfakis
ion. As long as it is satisfied with the dialog, it reinjecte fhackets
forwarded to it so that the connection can continue. If the-co
nection successfully negotiates encryption, the IPS calomger
profitably analyze it, so it downloads a per-connectioneaiitry
to the Shunt specifying that the action for the connectiothim
future is “forward.”

For heavy-tailed connections, this means a very large tityajor
of the connection’s packets will now pass through the Shamwice
without burdening the IPS with any further analysis load. tB&
other hand, if the IPS is dissatisfied with some element ofrthe
tial dialog, or with one of the hosts involved, it download&ieop”
entry to terminate the connection. Note that by providingrén-
jection, we can promote an intrusidetectionsystem into an intru-
sionpreventionsystem, one that does not merely detect attacks but
can block them before they complete. Reinjection also alltive
IPS tonormalizetraffic [11] to remove ambiguities that attackers
can leverage to evade the IPS [22]. Finally, if the IPS is le&
resolve whether the connection can progress without fuethaly-
sis, it simply leaves the Shunt'’s tables unmodified and ooes to
receive the connection’s packets due to the Shunt’s dedatitin.

Put more simply, we can frame Shunting as providing a form
of filtering that is particularly well suited to preserving enuch
security-relevant information as possible given the needidcard
large volumes of traffic. In this paper we present evidendaattk
up this assertion, and discuss numerous subtle points tisat a
when realizing Shunting in practice. We present the Shgrain
chitecture, based on fixed-size table lookups and a shaesdeny
interface to the IPS that greatly simplifies the hardwarelémen-
tation because it allows the hardware to make imperfecsiet.
Since the Shunt requires only fixed table lookups on headdsfie
we can implement it readily in a small amount of custom hardwa

We modified the Bro intrusion detection system [20] to take ad
vantage of the Shunt, giving it more direct IPS capabilitiesn
it has had in the past (which involved enabling it to updatgep
ACL entries by logging into the router), and implemented glam
modifications to its analysis scripts. Testing this systeingifull
packet traces from a Gbps-connected site with 1000s of bbetgs
that Bro can leverage a modest Shunt configuration to offl6&6+5
90% of the traffic. This in turn suggests that the Shunt aechitre
should enable Bro to process a Gbps stream with ease whem usin
a Shunting device coupled with a general-purpose, comméulit
platform.

We have implemented the Shunt in hardware on the NF2 [17]
FPGA system. While our board does not yet support all of the
architecture’s features, we can use it to evaluate the maichey
nisms, and it includes sufficient functionality to ensure faasi-
bility of processing data-cluding using a general purpose, com-
modity PC for rich IPS analysis-at Ghps rates for traffic streams
with realistic packet sizes.

We begin in Section 2 with a survey of related work. Section 3
gives an overview of the Shunting architecture and how iti$en
itself to fast operation in hardware. We then describe irtiGed
a prototype hardware implementation that realizes thimse. In
Section 5 we discuss general issues with integrating Bro,ira6
the decisions we made regarding how to enhance Bro’s ardtysi
leverage the Shunt. We evaluate the effectiveness of Styrdas
well as sensitivities to implementation parameters, iniSed. In
Section 8 we discuss ongoing work, and we conclude in Seétion

2. RELATED WORK

Intrusion detection systems (IDSs) monitor host or netwairk
tivity to spot attempted or successful misuse of comput&tsch
misuses might constitute attacks or simply violations dfqyare-
strictions. While there is a vast literature on IDSs, we tooo it
here only in a limited fashion because our Shunting architedor
the most part is indifferent to the particular mechanismthefiDS
it supports. Indeed, we aim for Shunting to provide cheag\ware
assistance for a wide range of network-based IDSs.

That said, part of our discussion concerns implementingh&hu
ing in conjunction with a particular IDS, the open-source Bys-
tem [20]. Bro provides an event-oriented framework thatptes!
generic (non-security-specific) analysis of network teadf layers
3,4 and 7, with an interpreted, domain-specific “policy gtrian-
guage used to express higher level analysis triggered bycita-
rence of particular events. The ability to script this latiealysis
makes it particularly easy to extend Bro to work in conjunmetivith
a shunting device.

When an IDS is capable of not only detecting an attack but also
blocking it to prevent it from succeeding, it is termed arruston
preventiorsystem (IPS). Since Shunting directly enables IPS func-
tionality by diverting packetshroughan intrusion analyzer rather
than simply giving it a passive copy of the traffic stream, hist
paper we will generally use the term IPS to describe the syste
with which the Shunt interacts, and only use the term IDS when
the distinction between detection and prevention is sicguifi.

The prior work most directly related to ours concerns other
approaches for using hardware to augment IPS capabilities.
Kruegel and colleagues developed an architecture for exatéig
signature-based systems using a 4-step process that gsavidl-
tiple, parallel IPS analyzers each with a subset of the toaffic
that conforms to a small superset of the traffic it needs tealet
particular attacks [15]. Input traffic flows into a simple thaare
device (the “scatterer”) that divides the traffic in a rouothin fash-
ion among a group of classifiers (the “slicers”). Each slad®rcks
every packet to see whether it might match one or more siggstu
If so, it forwards the packet to the appropriate “reassenibidich
reassembles the packet stream before forwarding the strieetime
appropriate IPS engine(s).

Another technigue commonly proposed for high-speed
processing—generally oriented towards IDS rather than IPS
functionality—is “pushing processing into the NIC": usirg
network interface to offload much of the processing requfced
passive packet capture and analysis. Shunting resemhkes th
concept, although our processing model is very differerd an
involves explicit inline/diversion decisions. Deri [9] qposes



using a router (Juniper M-series, which allows for traffitefing

tional 1 Gbps of internal memory bandwidth. If we not only mon

based on header fields [16]) as a smart Network Interface Carditor but also forward, then PC inline for a bidirectional GHmk

(NIC), performing generic traffic accounting and simple packet
filtering and sampling, and sending the filtered/sampleshstrto a
Linux host. The Intel IXP family of “network processors” pides

a framework to perform in-NIC packet-processing [13]. TK®|
series is composed of multiple miniature processors thettzde in
parallel, along with a StrongARM control processor [16]eTKP
has been proposed as a means to accelerate Snort signatahe ma
ing [2] by implementing portions of the signature matchimgl a
other pieces on the Snort stack. Indeed, there is a largatlite

on implementing signature-matching in custom hardwaréetHs
work is not applicable to accelerating IPSs in general, rothan

for offloading the signature matching they perform.

Using Endace’s DAG 4 cards [3], lannaconne and colleagues
present a network adapter that permits passive monitoffil@Cs
192 links (10 Gbps) [12]. The authors use the DAG card’'s FPGA
to compress packet headers into flow traces, and send ordg tho
flow traces to the PC host. The authors use a hashed, lim#ed-s
connection table to store the flow traces, arguing that, thigthelp
of fast PCI buses (64 bits, 66 MHz), it is possible to moniteyr |
TCP, and UDP headers on 10 Gbps links, enabling header-ofly |
analysis. However, clearly such analysis cannot extendgpeic-
tion of application-level semantics, since the availabferimation
does not include transport payloads.

The SCAMPI project also proposes using a smart network
adapter to limit the amount of traffic that reaches the host in
packet capture scenarios [4, 5]. SCAMPI runs on severagrdiff
ent architectures, including Intel IXP family of networkoges-
sors, Endace’s DAG cards, and their own network adaptdectal
“COMBO.” COMBO adapters perform systematic (determiwisti
and probabilistic 1-inV sampling, address- and port-based sam-
pling, payload string searching, generic flow-state actogrand
reporting, and packet filtering using FPL-2 (an extended;-Ble
language).

In contrast to previous approaches, Shunting is based on cou
pling an IPS running in a general-purpose computing enwiemt
with a separate hardware device, allowing the IPS to cortitrel
processing load it sees at the granularity of individuaatns. In
addition, Shunting achieves this with minimal assumptiaheut
the IPSs overall operation, allowing the specialized haréwo re-
main(i) broadly applicable, an(ii) simple and cheap.

3. THE SHUNT ARCHITECTURE

In this section we present the shunting architecture. Wénbeg
with an overview of the general architecture and the matvdbe-
hind it (§3.1), and then discuss in detail the structure of the Shunt
device’s tables§3.2), which act as a cache for the IPS. We finish
in §3.4 with an important refinement to the architectdioeyward-N.

3.1 Overview

Inline traffic processing is a particularly demanding atfj\be-
cause the speed of the processing directly limits overailvak
performance. If the inline element cannot keep up with the ra
at which new traffic arrives, it eventually will exhaust itsftering
capacity and drop some of the traffic, affecting the qualfty-
reliable connections and imposing a major impairment t@aié
traffic due to the transport protocol’s congestion response

At high speeds (Gbps), using a commodity PC for inline packet
processing becomes very difficult. Simply monitoring theffic
stream requires 1 Gbps of bandwidth across the I/O bus ang4 Gb
bandwidth to memory. In addition, if the monitor operatesiser
level, unless we can exploit memory mapping we need an addi-

requires 4 Gbps of 1/0 bandwidth and 4 Gbps of memory band-
width (with perhaps another 4 Gbps memory bandwidth if penfo

ing user-level analysis), leaving little additional resms for pro-
cessing. Furthermore, 10 Gbps Ethernet in early deployntieat
problem is growing worse.

Figure 1 shows the Shunting architecture we propose for en-
abling use of inexpensive, highly flexible commodity PCsifidine
packet processing. Shuntbased system consists of two elements,
a software packet processor (thealysis Engingand a hardware
forwarding element (th&huntitself).

The Analysis Engine, such as an IPS, views the Shunt as a nor-
mal Ethernet device, except that the Shunt has a series lektab
that act as a cache for rules. The Shunt device treats thieles ta
as read-only; it is the responsibility of the Analysis Erggto both
manage the cache and to resolve cache misses by maintaiaieg m
comprehensive state.

When a packet arrives, the device chooses from one of thee po
sibilities: (a) forward the packet to the opposite integfgthick,
solid line), (b) drop it (thin, dashed line), or (c) divegh{un) it
to the analyzer (thin, dotted line) by examining the paclesder
and selecting the highest priority action. For packetsrttekto the
Analysis Engine, the analyzer makes another decisiondeggthe
packet's fate: (c.1) inject the packet back to the netwotérface,
or (c.2) drop it. It may optionally at this point also upddte Shunt
device’s tables to offload similar decisions in the future.

In particular, the Analysis Engine must understand thaStnant
hardware is a cache: if a connection is offloaded to the Shivat,
Analysis Engine must still maintain state for the connett&ince
it may be necessary to flush the cache entry and return tctidiger
the connection’s traffic through the Analysis Engine.

The Shunt architecture aims to achieve several goals., Riest
want separation of mechanism and policy, with the Shuntigrov
ing only the former. Along these lines, while our implemeiata
couples the system with Bro, we intend the architecturerectly
support other types of analyzers, too. Second, we want tp kee
the Shunt very simple: only examining headers, and withredete
ministic memory behavior, enables an easy and efficientenel
implementation. Often, packet processing is limited by mgm
accesses, so we imposed a budget of a limited number of ascess
per packet. Related to this, the architecture requiresaniynimal
amount of buffering, which it achieves by always making irame
diate decisions regarding the next-hop destination forraiag
packet.

Finally, for the Shunt to realize significant performancénga
the policy used by the IPS must enable the Shunt to forward mos
packets without involving the analyzer, and at high speduaisTfor
traffic which policy has determined does not require furtaly-
sis, the Shunt must impose only a negligible forwarding ylela

3.2 The Shunt’s Tables

We accomplished these goals with a simple mechanism: header
based table lookup, where the lookup is “incomplete” in that
implement it quickly in hardware using a cache that may danta
only a subset of the table entries. The Shunt’s decision mgaki
(Figure 1) is conceptually very simple. We use two tableg on
indexed by IP address and another indexed by the connection 5
tuple, along with a fixed table (th&tatic filter) applied to certain
header fields such as TCP SYN/FIN/RST control flags (Figi2e 3.

The device looks up each packet in the tables in parallel. If a
lookup finds an entry, the result includes an actifmmvard, drop,
or shun) and a priority from 0 to 7. A priority encoder then selects
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Figure 1. Shunting Main Architecture. The shunt examines tre headers of received packets to determine the associatecian:

forward, drop, or shunt to the Analysis Engine. The Analysis Engine
and either drops analyzed packets for immediate intrusion peventio

the highest priority entfyand performs the corresponding action
on the packet. If the device does not find a match in any table, i
usesshuntas the implicit action.

The connection table has entries indexed with the usuap&-tu
of source and destination IP addresses, source and d&stipatts,
and transport protocol (TCP or UDP). This is the most impurta
table for achieving high performance, as it enables fin@gch
per-connection decision-making on the part of the analyxddi-
tionally, the connection table includes an optional redaid used
to implementforward-N, which we discuss later.

The IP address table has actions associated with it for ieth t
source and destination addresses. This table mainly strves
plement static and dynamic firewall rules, such as blockimgnin
and newly detected attackers, or whitelisting high volumeers
or authorized vulnerability scanners.

Finally, we also have a fixed header-filter table, which idelsi
default rules (such as diverting fragments and TCP con@okp
ets). We compile these static rules into the hardware carafiigun,
with low priorities associated with them to make the enteasy to
override.

Other than the static filter, all table entries become pdpdia

only upon request by the analyzer (including upon its spartior
example, when the analyzer decides that it is safe to fontreed
remainder of a connection without further inspection, #tincts
the Shunt to add a corresponding entry. This coupling betwee
the Shunt’s filtering and the analyzer’s decision-makingves the
analyzer to vet requests on a connection-by-connectiostr -
host basis, and, once vetted, efficiently skip the subsedtagfic.
It similarly becomes easy for the analyzer to summarily blan
offending host, which not only blocks all traffic from the effder,
but prevents the offender from loading the analyzer witlffitia
enabling the IPS to protect itself against overload if it @entify
the source of the load.

The default-shunt nature produces a fail-safe device. Dty
IPS instructs the Shunt that it deems a given flow “safe” orl'ma
cious” will the Shunt process the flow in an unconditional mem
In addition, if the IPS cannot keep up with the pace of traffic d
verted through it, the traffic doe®t escape analysis, but instead is
throttled back to the rate at which the IPS can vet it. Whiig tian

!Conflicting entries with equal priorities indicate a poliogonsis-
tency. Architecturally, the hardware could signal suchditions.
In our implementation, the Shunt uses a fixed set of interrial p
orities to resolve ties, and it is the responsibility of thealysis
Engine to not create such conflicts.

directly updats the Shunt'’s caches to control future processing,
n or reinjects them once vetted for safety.

have a deleterious effect on network performance, it hasdahect
safety properties in terms of “better safe than sorry.”

An important feature of the architecture is that the Shuatdes
arecaches an entry is not guaranteed to be persistent in the Shunt
if another entry is inserted. The shunt haghesch potential entry
to one or more locations in memory. When adding a new entigy, th
may evict an old entry. This functionality allows the Shumper-
form a small, bounded number of memory accesses into a fized-s
memory. It is the responsibility of the Analysis Engine tgpect
that the Shunt device is a cache and not a complete datawstruct
Thus, packets designated for forwarding or dropping cdhlsi
diverted to the Analysis Engine, requiring the Analysis iBego
reinsert the corresponding table entry. Such evictionshcavever
create subtle problems of priority inversion, which we dsgin
Section 3.3.

The cache-like nature of these tables enables fast operatio
Rather than having to search through a possibly unbounded da
structure (e.g., a chain of hash buckets), the packet heditectly
index all entries that the Shunt needs to examine.

The IP and connection tables are both directional. Eacletitire
can have a different action and priority associated witfilius, for
example, the analyzer can monitor the inbound side of a asnne
tion (by setting ashuntaction) while allowing the outbound half
unobstructed (with éorward action).

Finally, table entries also includesampléfield. If non-zero, this
field specifies an index into a table of probabilities. Theidethen
sends @opyof the packet to the analyzer with the given probability.
This functionality enables the analyzer to monitor a cotinador
liveness and volume without having to receive all of itsftcaf

3.3 Interfacing to the Shunt

In our design, the Shunt device acts as an Ethernet card to the
host, transferring to the kernel any packets directed tttst and
processing the remainder according to the device’s tabeson-
trol the Shunt, the Analysis Engine directly manipulates ¢hche
entries, which requires knowledge of the specific format jagh-
erties of the Shunt's caches. Clearly, we could insteadigeos
more abstract interface, managing cache deletions andiorse
based on higher-level requests. We have not done so yetdmecau
so far we have only created a single hardware implementéfiec-
tion 4), so in the subsequent discussion we assume that tiggia
Engine manages the caches. Additionally, since we view fthmiS
as a device coupled to a stateful IDS system, having the Aisaly

2Using a hash function chosen to resist attacker manipuléip
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can be bound to each direction of a flow; the option field suppds forward-N (Section 3.4) and destination routing (Section 4).

Engine directly manage the caches eliminates the need for a d

plicate state-handling infrastructure to track a complétev of all
connections.

An important issue is that the Analysis Engine driver mushma

age conflicts in the tables to prevent priority inversiontw dy-

namic rules apply to the same packet (such as a connectits tab

entry allowing a connection to a blocked known offenderhwiif-
ferent priorities and actions, and the higher priority iteeeds to
be evicted, then it is up to the Analysis Engine to ensure ttheat
eviction does not lead to the Shunt now taking an incorfi@gtard
or drop action. (An incorrecshuntaction is not a problem, since
this allows the Analysis Engine to correct the action.)

Thus, the Analysis Engine must either have direct contref ov

the Shunt's caches (selecting which entry to evict wherrimgpa
new entry), or the Shunt must reliably notify the Analysigfme of
the Shunt’s eviction decisions, allowing the Analysis Eegfio then
also evict any lower priority entries as well. Finally, weathat we
can still apply the Shunting approach even if the Analysigiga
does not have such control or notification, providing it ¢oaiats
itself to never insert lower priority entries that can leadstich
conflicts, instead emulating the entries in software.

3.4 Refining theforward Action

To enable such offload, we need to extend the basic archiéectu
to offer finer-grained control than per-connection, yet e® aeed
to do so in a manner that remains highly efficient for the sligat
vice to process and economic in terms of the required talaleesp
Our extensionforward-N, is a refinement to thrward function-
ality. The notion behindorward-N is “skip the nextN bytes”
rather than “skip the rest of the connection.”

We need to take care, however, in specifyiNg If it is simply
a byte count, theri) for each new packet we will need to write

to the table to update the count by decrementing the number of

bytes of payload the packet carries, and, more importa(iijiythe
accounting will be incorrect for out-of-sequence packeffiese
latter can happen due to packet loss or reordering, racetio sl
in installing the table entry, or deliberate attacker malgpion.

We therefore implemerforward-N in terms of a TCP connec-
tion’s sequence space, rather than using a byte count. \Weemig
the per-connection shunt table with 32 bits of sequence runfior
packets with shunting decisions fdrward-N, the device checks
whether the upper sequence number of the packet is lesSttian
table entry. If so, iforwards the packet; otherwise, ghunts it.
The Analysis Engine then removes the entry when it detersriine
no longer serves any offload purpose; for example, when & ape
acknowledgment for a sequence number higher than the cutoff

When we evaluated the architecture as described above, we To implementforward-N we include an additional (optional)

found a particularly important class of traffic for which thasic
architecture lacks sufficient expressive power to effetyioffload
the IPS. This occurs for protocols that send a series ofdimns
over a single connection, for which the IPS would like to sher
(potentially large) elements of each transaction, but oaskip the
entire connection because doing so will entail missing rabrin-

formation associated with subsequent transactions.

This arises, for example, with persistent HTTP connectidfs
the IPS determines that the URL in a given client requestasvad,
it would like to skip over having to process the item returfacit
by the server; but th@ext client URL might be problematic, in
which case at that point the IPS needs to analyze the sereehis

field in connection table entries that specifies the sequenc®er
limit. In our hardware implementation, we also use this ai
field to specify alternate destinations, enabling the Skwaict as
a packet routing device, not just a packet forwarding de\sees4
below.

For non-TCP traffic, we lack an ordered sequence space to use

for a reliable cutoff, so for this functionality we would reeto in-
stead use a countdown counter or develop an applicationgmiot

3«Less than” in terms of using 32-bit sequence-space ariticme
i.e., adifference oK 2 GB.



specific rule for forward-N), which would significantly complicate
the Shunt.

However, it is not clear that non-TCP protocols transfefisuf
ciently large, skippable items to merit this addition, mttthan
benefiting from complete skippinfofward) or full analysis. Addi-
tionally, a non-TCHorward-N would require that the Shunt update
its tables on a per-packet basis. In the current design, tlatS
hardware only reads the tables, eliminating a large classed
conditions and other issues that might otherwise ariselfih per-
forms updates.

4. THE SHUNT HARDWARE

We implemented a prototype hardware design for Shuntinggusi
the NetFPGA 2 platform [17], using as a starting point theMNet
PGA reference implementation for a quad-port Ethernet Nl
NetFPGA 2 consists of four Gbps Ethernets connected to et
Pro 30 FPGA. Access to the card is via a standard PCI (33 MHz/32
bit) bus. In addition, the platform provides two 2 MB SRAMs&ie0
of which can be used for arbitrary data structures.

Figure 3 shows the block diagram for the NetFPGA-based Shunt
Our design uses a 32K-entry, two-location associative ptation
cache for IP addresses, and a 64K-entry, two-location &g
cache for connection rules. In a¥location associative cache, the
entry can reside in one df different cache locations, in a manner
similar to Bloom filters [1], Bloom-filter based hash tabl&s], or
skewed association caches [23].

For both the connection table and the address table, we U&e an
bit rule field to specify an actiorforward, drop, shunt or sample
a 3-bit priority; and a 3-bit sampling rate. Additionallygvinclude
fixed, low-priority rules forshunting TCP SYN/FIN/RST packets
as well as IP fragments. As previously discussed, the haslwa
follows the highest priority match, or, if it does not find ateta
shuns the packet to the Analysis Engine for analysis. For the con-
nection table, we canonicalize the 5-tuple and provide ferdift
rule for each direction in the flow.

For connection table entries, our design provides for an-add
tional, optional, record field. (The current hardware sutgop to
32K such optional records.) This field can specify a ruleithahly
valid if the packet's TCP sequence number is less than agcesp
fied limit, to support sequence skippin@ivard-N). We can also
instead use it to specify an alternate Ethernet interfackCMd-
dress, and VLAN tag, in order to allow the Shunt to reroutekpt
on a flow-by-flow basis.

5. INTEGRATING THE SHUNT WITH

BRO

To test our architecture in practice, we selected the Brasitn
detection system [20] as our Analysis Engine, due to its-highbl,
flexible, and expressive nature, as well as our strong farityi
with its internals. To adapt it, we added an API at the Broirg
level to support the Shunt'’s functionality, and modifiedaitalysis
policies to then utilize this API. We emphasize, howeveat tioth-
ing in our Shunting implementation has any particular kremlgle
of Bro’s workings.

By itself, Bro provides only limited intrusion preventionrfc-
tionality. Its scripts can execute arbitrary programs,chitdare used
operationally tq(i) terminate misbehaving TCP connections using
forged RST packets, an(d) install ACL blocks at a site’s border
router. However, both these actions occur post facto wigheet to
the network traffic that led Bro to detect a problem, so foacks
that proceed quickly, the reaction can come too late. Intewfdi
router ACL limitations restrict the use of blocking to 10Qsper-
haps 1000s of addresses. This might seem like a plenty, ut du
to the incessant presence of “background radiation” [18]waell
as the occasional outbreak of worms or large-scale botnegzsy
in fact operationally we desire the capacity to block 10096f
addresses.

With the Shunt, however, Bro can become a high-performance
IPS. By vetting each packet before it reaches its destindtie
combined system can block attacks before they succeedyaad-p
tively block suspect hosts at much larger scale than otlserwi

5.1 Changes to Bro’s Internals

Bro’s stateful nature already requires that Bro track atlvac
connections and their associated protocol analyzers, hssvall
IP addresses of interest. We extended and annotated these da
structures to incorporate Shunt-related information.

Bro maintains an internal whitelist of I[P addresses, the
Packet Fi |l t er class, which specifies a group of systems that
can be safely ignored. We extended this data structure foostp
blacklisting as well: IP addresses which should always belad.
This whitelist now allows us to populate the IP table in thengh
and to update the table on cache misses.

Bro also maintains a record for every established connectio
Each connection has associated with it a tree of relevaryana
ers, ranging from the TCP stream reassembler and signaatodm
ing engines to specific protocol parsers for HTTP, SSH, ahdrot

Such dynamic rerouting allows the Shunt hardware to act as a protocols. Bro can apply multiple protocol analyzers toragk

load-balancing front-end for a clusterized IDS [26] by diging
packets via an Ethernet switch to a designated IDS node on-a pe
connection basis. The VLAN rewriting allows the Shunt haadsv

to route flows between multiple connections on the same bvigic
fine-grained isolation.

Apart from its rule caches, the Shunt behaves like anothad-qu
port Ethernet card. Our design provides for access to theesac
themselves by reading and writing the Shunt's SRAM, as the
SRAM supports direct memory-mapped 1/O operations.

For much more extensive discussion of the hardware implemen
tation, including its use of “permutation” and location @sistive
caches, see [27]. Currently, a known bug in the FPGA board’s
firmware limits the hardware’s operation to 480 Mbps, bus thi
problem will be remedied with the next version of the board.

connectionconcurrentlyin order to robustly determine the actual
application protocol without relying on the (increasinglgtrust-
worthy) transport port number [10].

We added to this structure notions of “unessential” anderss
tial” analyzers, as follows. Unessential analyzers wibhqass a
connection’s packets if present, but the presence of suessen-
tial analysis does not suffice to require the Shunt to diesse
packets through the Analysis Engine. However, as long asa co
nection has associated with it at least one essential aratyen it
and all other analyzers will receive the connection’s ptck&he
decision regarding whether an analyzer is unessentialsemésl
is made on a per-connection basis, and can change (in particu
essential analyzers becoming unessential) during theection’s
lifetime. If every essential analyzer associated with aneation is
either removed or demoted to unessential, it is then safestall a
forward rule for the connection.

By default, all but the TCP stream reassembler and simiikityut
analyzers are considered essential. It is up to the anatyzty as-
sociated policy script to either mark the analyzer as umtisd€so
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Figure 3: The Shunt Hardware Block Diagram. Items in dark were modified from the NetFPGA reference design.

that it may still receive traffic) or simply remove it from cgider-
ation. Even when all analyzers are considered unessethigdbr-
ward rule uses a lower priority than the defashuntrule for TCP
SYN/FIN/RST packets, soonnect i on_fi ni shed and similar
end-of-session accounting still operates properly.

The API forforward-N functionality takes two parameters: the
number of bytes to skip (relative to the point in the stream pr
cessed so far), and a smaller value indicating the initiahimer of
these bytesiot to skip. The function (part of the TCP stream re-
assembler) converts the byte count to a sequence numbezdifysp
in aforward-N table entry. However, the stream reassembler does
not install this entry until having first processed the givermber
of initial bytes. We chose this interface to support commanmcf
tionality in which an analyzer (such as that for HTTP) detiees
that a large item will soon be transferred and wishes to ictspay
the beginning of the item. (If we instead left it up to the azal to
requestforward-N after it has received the beginning of the item,
often that is difficult for the analyzer to coordinate duette layer-
ing by which it receives aggregated information. For examnphe
of Bro’s natural interfaces for doing so delivers an entieen as a
unit to the higher-level analysis, rather than doing soguieeal.)

Since Bro is not multithreaded, if it determines that a packe
should be dropped to block an attack, the drop directive eg
cur prior to Bro beginning to process the next packet. Thus, a
the point where Bro’s internal engine requests a new paifkée
analysis of the current packet did not explicitly indicatshould
be dropped, we know we can safely go ahead and forward it. This
approach limits the latency introduced by the architectarBro’s
per-packet total analysis time, typically well under 1 msec

6. SHUNT-AWARE POLICIES

In order to effectively leverage Shunting, we must adapt the
Analysis Engine system to best employ it for forwarding unin
teresting traffic and blocking problematic traffic. In thiscson,
we discuss changes and extensions we introduced to the Bo ID
in this regard. We note that we intend these modificationexas
emplaryrather than complete; we present fairly modest additions
(with respect to Bro’s full suite of analysis) that nevetéss yield
significant performance gains.

6.1 SSH

For SSH analysis, we would like to produce a log of all SSH
sessions (including time and volume of data transferreligntc
and server software versions, and detection of brute-fpess-
word guessing. To this end, we modified Bro’s SSH analysis
script as follows. We first added an event handler for Bro’s
connect i on_cl osed event to log the time, source, destination,
and volume of the session, where we compute the volume of the
session based on the difference in sequence numbers betveeen
connection’s SYN and FIN packets. To check for SSH bruteeor
attacks, we allocate a per-source counter. When a connduatio
gins, we increment the counter and initiate polling of tharex-
tion for the next 10 seconds, where every 100 msec we assess th
connection’s status. As soon as the connection transfers than
10 KB of data, we assume that the user successfully autladedic
and reset the count to zero. If instead the counter ever esach
a predefined threshold (currently 10), indicating multipleort-
lived SSH session, we generate a Bro “notice” reflecting elyik
password-guessing attack.

If the polling process determines that the connection ajsdea
gitimate and/or inactive, the script demotes the SSH aralya
unessentialas discussed in the previous section). Now the Shunt
will forward all subsequent SSH traffic except for the finaNFer
RST (unless the user’s configuration has incorporated aifedyz-
ers still deemed essential).

As aresult, we can avoid processing nearly all SSH traffiglewh
still retaining the ability to (1) detect password guessi(®) de-
termine the approximate size of file transfers, (3) insp&it Ser-
sion strings (present in each connection’s initial datsharge),
and (4) distinguish between file transfers and interactagsions
in the log (as file transfers sustain much higher data ratssdit
interactive sessions).

6.2 HTTP

For HTTP, far and away most of the bytes transferred come in
server replies. Although some files (e.g., HTML, Java, Javpis
Flash) benefit significantly from IDS analysis, much of théada
comes instead in the form of images, video, audio, and bitnang-
fers.

We modified Bro’s HTTP reply analysis script to capture the

When constructing these modified analyses, we have to ensureMIME type and expected length of all responses. Then, for any

that they are “safe” that it is acceptable to ignore fitrevard’ed
traffic without impairing the security analysis.

response over a given size (default 10 KB), we examine the MIM
type. If the type matches one in a configurable “presumed’ safe



MIME Type Probably | Percentage of Average

Safe payload data Size
appl i cati on/ safe Yes 33.7% | 1.4MB
vi deo/ * Yes 28.5% | 8.9 MB
appl i cati on/ unsafe No 14.7%| 60KB
text/* No 8.8% | 22KB
i mge/ * Yes 85% | 7.8KB
audi o/ * Yes 54%| 2.6 MB
bi nary/ * No 0.6% | 218 KB
mul tipart/* Yes 0.3% | 354 KB
other No <0.1% 10 KB

Table 1: The different MIME types, whether the type is consid
ered “probably safe”, the percentage of the total HTTP replies
of each MIME type, and the average payload size for the Wi-
VERSITY | trace.

whitelist (default: images, video, audio, and some appboa
types), the script instructs the TCP stream reassembléipgmser
the payload usindorward-N. Otherwise, or if the size is unavail-
able (e.g., due to use of HTTP “chunking”), we perform the ful
regular analysis.

In general, these “presumed safe” types represent the btlie o
HTTP transfers. Table 1 lists the different MIME types obserin
the UNIVERSITY | trace (see Section 7 for trace details); whether
we consider items of the given type as likely safe; the foactf
the HTTP responses they represent; and the average iteforsite
such HTTP responses that specify a payload length. Forcapiolin
data, we currently considéi nar y, nswor d, oct et - stream
phdat a, pdf ,vnd. ns- power poi nt ,x- xpi nstal | ,x-sh,
X-pkcs7-crl, x-tar, x-zi p-conpressed, andzi p as
“presumed safe”. For some of these, we might want to conduct
further analysis, but Bro presently lacks analyzers speitifthese
item types. If it included these, we suspect that often tradyaer
would only need to inspect the beginning of the item tranger
the next paragraph) to determine whether the item was palignt
problematic; if not, then we could still skip the remaindértiwe
item.

Even when skipping the payload, however, we still examire th
beginning of each item, regardless of file type. This allows u
for example, to perform signature analysis to verify whetthe
item’s actual type corresponds with its stated type. Thingawve
present in our evaluation assume we inspect (and thus cakipdt
the default value of the first 5 KB of each item.

6.3 Dynamic Protocol Detection

Bro’s Dynamic Protocol Detection (DPD; [10]) initially alyaes
all traffic in order to determine the protocols (primarily at gppli-
cation layer) actually embedded in a data stream. Bro’sasiga
engine [24] matches the initial (default 2 KB) data in eachrez-
tion to find candidateprotocols that might match the stream. Bro
then instantiates instances of these analyzers which oamtly
process the stream from the beginning. Whenever an analgner
cludes the stream cannot belong to its protocol, it dropobfur-
ther analysis. Otherwise, it continues to process futuckegta as
they are received.

We incorporate DPD into the Shunting framework by initially
marking the corresponding signature analyzers as eskefttige
2 KB limit, we demote the signature analyzers to unessentfal
no other essential analyzer remains active at that poiaty Bro
installs aforward entry to skip over the remainder of the connection

Trace || Percentage forwardef
Bytes Packets
UNIVERSITY | || 54.9% 43.8%
UNIVERSITY Il || 58.1% 47.0%
UNIVERSITY Il || 69.9% 52.5%
LAB | || 84.5% 75.7%
LAB Il || 88.2% 79.2%
SC1 || 91.1% 88.0%

Table 2: Fraction of forwardable (non-analyzed) traffic

(except for its final FIN/RST control packets, which are rhattby
the Shunt’s higher-priority static filter).

If DPD did identify the flow’s protocol, however, then Bro Wil
have classified the corresponding analyzer as essentthif gand
other inessential analyzers) will continue receiving tioevi traf-
fic. Thus, Shunting does not affect DPD’s ability to deteet pino-
tocol present in a traffic flow.

7. EVALUATING THE SHUNT

To evaluate the efficacy of the Shunting architecture, we-mod
ified Bro’s interface for reading trace files to preprocesskpts
read from traces using the Shunting decision tables. Daingl-s
lowed us to evaluate the tradeoffs for different analysis¥arding
schemes, as developed in the previous section.

We used six traces: three from a large university with sédds
of thousands of users (University I, Il and 11l), two from &earch
laboratory with 8,000 hosts (Lab | and II), and one trace feosu-
percomputing center with thousands of users (SC I). We dpeel
our modifications to Bro’s processing using onlWlERSITY I,
using the other traces solely for evaluation.

UNIVERSITY | spans one hour and captured 50% of the traffic
crossing the border of the university, which employs perizad-
balancing across two heavily-loaded Gigabit Ethernetslinkhe
trace (captured mid-afternoon on a workday), which inctuek
packets and their payloads, was constructed from subticaes
tured with a cluster of six machines, and totals 222 GRI\ER-
sITY Il consists of one hour of traffic, totaling 196 GB, recorded
at 4PM on a Friday. We collected \WERSITY Ill at 2-3AM
on a Saturday morning, to reflect an off-hours workload. tl
109 GB.

Due to a node failure undetected during the capture process,
UNIVERSITY Il and UNIVERSITY IlI only captured 41% of the
traffic rather than 50%. One subtrace oNIMERSITY Il reported
a .02% packet dropwhile all other traces reported no drops.

LaB | consists of all traffic during an afternoon workday hour,
recorded at the Laboratory’s 10 Gbps access link, totalhg8
of data. The packet recording process reported a measurenogn
rate of 0.4% of the packets.AB Il consists of two hours of TCP-
only traffic recorded two years earlier at the same faciityp dur-
ing the afternoon of a workday. The trace totals 117 GB; unfor
nately, no measurement drop information is available.

SC | consists of all traffic seen at the border (but inside the
firewall, unlike LaB | and LaB Il) of the supercomputing center,
recorded for 69 minutes during the afternoon of a workdatptitls
73 GB, with a reported measurement drop rate of 0.07%.

For evaluating Shunting, our primary interest is in the prtipn
of traffic that we can forward without needing further anay$§or
an IPS, this represents the fraction of the traffic procedsedtly

4Apparently due to a transient glitch on a collection node.
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Figure 4: Breakdown of types of traffic that require analysisvs. forwarding.

by the Shunt without involving bus-transfer overhead. @eshe
crucial question is to what degree we maintain a sound lév&t-o
curity analysis even in the presence of such offload; thustvixe
to formulate algorithms for deciding which traffic to skipattgain
the largest offload for the least loss of detection oppotiesi We
frame our decisions in this regard in the remainder of théi@ec
In addition, we evaluate the behavior of cache sizes usiadJth -
VERSITY | trace.

7.1 Evaluating the Fraction Forwarded

We processed each trace with Bro running a number of analyz-
ers, including: generic TCP connection analysis; SSH; HT&P
quests and replies; dynamic protocol detection; SMTP; IRE (
cluding bot detection); POP; DNS; and scan detection. We als
evaluated on a per-connection basis the amount of traffiyzeth
versus directly forwarded.

Table 2 summarizes the overall results. For the somewhst les
diverse laboratory and supercomputing environments, thead
gain is very large, 75-91% of the packets and bytes. Everhtor t
university environment, we see significant gains along ithes| of
50% of the packets and bytes.

Figure 4 breaks down the traffic by bytes analyzed vs. bytes fo
warded, for various types of traffic. The Shunt always dwveirt-
classified traffic (not present in any decision table) to timalfsis
Engine, which we show at the lefthand edge of the figure. Roello
ing this portion of the traffic we plot the makeup of analyzexfic
(diverted to the Analysis Engine because an analyzer neesiset
it) for different application protocols, and then the magke for-
warded traffic that the Analysis Engine can skip processurgtd
use of Shunting. (We mark the beginning of this last grough it
vertical line to help distinguish it from the preceding goguNote
that the applications presented in the plot reflect not ordfit
seen on the application’s well-known port, but also traffieriti-
fied using dynamic protocol detection.

Indeed, for the university traces we find that the main benefit
from Shunting come from the dynamic protocol detection gsia)
which often can examine just the beginning of a flow and then fo
ward the remainder if it belongs to an application protobalkthe
NIDS does not analyze. We also find both the University traces
SC | dominated by large-volume flows.

In contrast, in lAB I's traffic mix, SSH dominates. Such an en-
vironment provides a near best-case for Shunting, s88¢gains
very large benefit by skipping over large, unanalyzable ygted
transfers. SC | also has a traffic mix dominated38H and other
large, unanalyzable file transfers. (SC | is also the onlyrenv
ment where the FTP analyzer sees enough traffic to signifjcant
benefit from Shunting.)

The figure demonstrates the central role that traffic typag ipl
the effectiveness of Shuntin@SH can be almost completely for-
warded, while even with Shunting HTTP traffic requires digaint
analysis.

We also see how, even at a single site, the mix of traffic over
the course of a day can present significantly different Idada
Shunt-based IDS: comparingh\WERSITY | (captured during the
workday) with UNIVERSITY 11l (in the middle of the night) we
see significant differences, withNWERSITY 111 exhibiting a con-
siderably higher fraction of unanalyzable traffic, and ttasving
greater benefit from Shunting.

Finally, we find that Shunting is somewhat less effectivefat o
floading packets compared to bytes. Since Shunting’s beraeft
greatest for heavy-tailed flows, it is natural to expect thatcan
forward a greater fraction of bytes than packets.

7.2 Sizing the Connection Cache

A critical design parameter for the Shunt is sizing the catina
cache: it must be large enough to minimize the miss rate,rhalls
enough to limit the hardware cost.

To assess this tradeoff, we analyzed theERSITY | trace to
identify all of the forwarded packets, each of which cormsgs to
a potential connection table entry. We then fed the regulittess
patterns into a custom-written cache simulator to evaltleeniss-
rate for different connection table cache sizes. (For thayesis,
we did not assume eviction of entries upon observing a TCRIFIN
RST control packet, an optimization that could further @ithe
miss rate.)

Figure 5 plots the miss rate (Y-axis, log-scaled) as we Vagy t
cache size (X-axis, log scaled) for different cache orgations and
eviction policies. We see that the 64K-entry cache used by ou
hardware implementation provides ample head-room. A tirec
mapped cache would experience a 0.41% miss rate, while for a
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Figure 5: Connection table cache miss rates MIVERSITY |,
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(random or LRU).

2-way associative cache this drops to 0.11%. A 2-locatisncia-
tive cache, without any searching, further reduces the raigsto
0.092%. Finally, a 2-way associative cache with LRU repiaeet
provides a 0.059% miss rate.

Although the associative cache with LRU replacement pewid
a better miss rate than the 2-location associative cacherantdom
replacement, we prefer the location-associative cachausecit is
easier to implement. To implement an LRU cache, the Shuntdvou
need to update connection entries upon receipt of packetfera
warded packets are never sent to the Analysis Engine (sailit co
not track which entries are least-recently used).

Also of particular note is the relative effectiveness ofreseall
caches. A 2-location associative cache with just 4K enpiiegides
a miss rate of only 1.9%. If entries require 16 bytes, thigyests
that a connection cache of just 64 KB would be effective. Tlaus
Shunt built as an ASIC or using a programmable-firmware Etster
card could readily use on-chip memory for its tables.

8. FUTURE WORK

Our primary plans involve porting the Shunt implementation
the 2.1 version of the NetFPGA board and advancing the iategr
tion with Bro to a level appropriate (and tested for) 24x7 rape
tional use. The 2.1 NetFPGA board both fixes the input FIFO
problem that causes lockup for high-data-rate flows and ialso
cludes 64 MB of SDRAM, a larger FPGA, and greater availapilit
in terms of number of units we can obtain.

With the new board we will complete final integration of the
Shunt into Bro and operationally deploy it in our networkn& the
designers of the NetFPGA 2.1 board plan to also make it commer
cially available, we hope to deploy at third party sites torgase
our operational experience with Shunting, as well as pewad-
hancements to Bro for intra-enterprise operation.

In addition, since we have validated that small connectamhes
suffice, we are now investigating whether firmware-prograie
Ethernet cards could directly implement a Shunt.

9. CONCLUSIONS

We have developed a new model for packet processing, Shunt-
ing, which provides significant benefits for network intarsipre-
vention in an environments for which an IPS can dynamicadly-d
ignate portions of traffic stream as not requiring furthealgsis.

The architecture splits processing into a relatively sanpable-

driven hardware device that processes the entire trafastrin-
line, and a flexible analyzer (the IPS proper) that can ruarsggly,
communicating with the device either over a local bus or a-ded
cated Gbps Ethernet link.

We argue that this architecture can realize a number offsigni
icant benefits: (1) enabling what previously was a passitreli-in
sion detection system to operate inline, gaining the powértou-
sion prevention as well as the opportunity to “normalize” traffic
to remove ambiguities that attackers can exploit for evafld];
(2) significantly offloading the IPS by providing a mechanifm
it to make fine-grained, dynamic decisions regarding whielf t
fic streams it analyzes, and (to a degree) which sub-elenaénts
stream it sees; (3) enabling large-scale, fine-graineddgdress
or per-connection) blocking of hostile traffic sources; éhdpro-
viding a mechanism for an IPS to protect itself from overlifad
can identify sources that load in excessively.

We have already developed hardware capable of performéng th
Shunting operations [27], demonstrating that we can keesle-
cialized cache within the Shunt hardware relatively smaith
64 KB caches producing viably low miss rates. In this workya#
as framing the broader Shunting architecture, we have edapé
Bro intrusion detection system to work with Shunting. We fihait
with a modest set of additions to its analysis, it can offloadI®%
of its traffic load, as well as gaining the major benefit of dimab
fine-grained intrusioprevention
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